[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sea-level driven land conversion and the formation of ghost forests

An Author Correction to this article was published on 02 August 2019

This article has been updated

Abstract

Ghost forests created by the submergence of low-lying land are one of the most striking indicators of climate change along the Atlantic coast of North America. Although dead trees at the margin of estuaries were described as early as 1910, recent research has led to new recognition that the submergence of terrestrial land is geographically widespread, ecologically and economically important, and globally relevant to the survival of coastal wetlands in the face of rapid sea level rise. This emerging understanding has in turn generated widespread interest in the physical and ecological mechanisms influencing the extent and pace of upland to wetland conversion. Choices between defending the coast from sea level rise and facilitating ecosystem transgression will play a fundamental role in determining the fate and function of low-lying coastal land.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic distribution of sea-level driven land conversion in North America.

David Johnson (a), Kenneth W. Able (b), USDA Farm Service Agency (c) and Amy Langston, Virginia Institute of Marine Science (d)

Fig. 2: Accelerating forest retreat rates.
Fig. 3: Stages of ghost forest creation.
Fig. 4: Effect of topographic slope and human impacts on marsh size.
Fig. 5: Effect of flood defence strategy and land conversion on wetland size.

Anglian Coastal Monitoring Programme (a). Panel b adapted from ref. 83, Springer Nature Ltd

Fig. 6: Land conversion in the face of human barriers.

Similar content being viewed by others

Change history

  • 02 August 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Kemp, A. C. et al. Climate related sea-level variations over the past two millennia. Proc. Natl Acad. Sci. USA 108, 11017–11022 (2011).

    Article  CAS  Google Scholar 

  2. Hopkinson, C. S., Lugo, A. E., Alber, M., Covich, A. P. & Van Bloem, S. J. Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Front. Ecol. Environ. 6, 255–263 (2008).

    Article  Google Scholar 

  3. Neumann, B., Vafedis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding: a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  CAS  Google Scholar 

  4. White, E. & Kaplan, D. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosyst. Health Sust. 3, e01258 (2017).

    Article  Google Scholar 

  5. Horton, B. P., Rahmstorf, S., Engelhart, S. E. & Kemp, A. C. Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat. Sci. Rev. 84, 1–6 (2014).

    Article  Google Scholar 

  6. Rasmussen, D. J. et al. Extreme sea level implications of 1.5° C, 2.0° C, and 2.5° C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 13, 034040 (2018).

    Article  Google Scholar 

  7. Morris, J. T., Edwards, J., Crooks, S. & Reyes, E. in Recarbonization of the biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R. et al.) 517–531 (Springer, 2012).

  8. Haer, T., Kalnay, E., Kearney, M. & Moll, H. Relative sea-level rise and the conterminous United States: consequences of potential land inundation in terms of population at risk and GDP loss. Glob. Environ. Chang. 23, 1627–1636 (2013).

    Article  Google Scholar 

  9. Milliman, J. D., Broadus, J. M. & Gable, F. Environmental and economic implications of rising sea level and subsiding deltas: the Nile and Bengal examples. AMBIO 18, 340–345 (1989).

    Google Scholar 

  10. Bin, O. & Polasky, S. Evidence on the amenity value of wetlands in a rural setting. Am. J. Agric. Econ. 37, 589–602 (2005).

    Google Scholar 

  11. Field, C. R., Dayer, A. A. & Elphick, C. S. Social factors can influence ecosystem migration. Proc. Natl Acad. Sci. USA 114, 9134–9139 (2017). Landowner surveys indicate resistance to incentive programs allowing for marsh migration on private property.

    Article  CAS  Google Scholar 

  12. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  13. Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G. & Costanza, R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecol. Soc. 15, 14 (2010).

    Article  Google Scholar 

  14. Shreve, F., Chrysler, M. A., Blodgett, F. H. & Besley, F. W. The plant life of Maryland (Johns Hopkins Press, 1910).

  15. Robichaud, A. & Begin, Y. The effects of storms and sea level rise on a coastal forest margin in New Brunswick, Eastern Canada. J. Coast. Res. 13, 429–439 (1997).

    Google Scholar 

  16. Smith, J. A. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLoS ONE 8, e65091 (2013). Invasive Phragmites is the dominant species in submerged forests.

    Article  Google Scholar 

  17. Raabe, E. A. & Stumpf, R. P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries Coasts 39, 145–157 (2016).

    Article  Google Scholar 

  18. Langston, A. K., Kaplan, D. A. & Putz, F. E. A casualty of climate change? Loss of freshwater forest islands on Florida’s Gulf Coast. Glob. Chang. Biol. 23, 5383–5397 (2017).

    Article  Google Scholar 

  19. Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41, 940–951 (2018). 100,000 acres of marsh migration since 1850 in Chesapeake region.

    Article  Google Scholar 

  20. Schieder, N. W. Reconstructing coastal forest retreat and marsh migration response to historical sea level rise. MSc thesis, College of William and Mary, Virginia Institute of Marine Science (2017).

  21. Conner, W. H., K. W. Krauss & T. W. Doyle. in Ecology of Tidal Freshwater Forested Wetlands of Southeastern United States (Conner, W. H. et al.) 223–253 (Springer, 2007).

  22. Noe, G. B., Krauss, K. W., Lockaby, B. G., Conner, W. H. & Hupp, C. R. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 114, 225–244 (2013).

    Article  CAS  Google Scholar 

  23. Fitzgerald, D. M., Fenster, M. S., Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet Sci. 36, 601–47 (2008).

    Article  CAS  Google Scholar 

  24. Kirwan, M. L. & J. P. Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013). Proposes that wetland fate largely depends on how humans respond to sea level rise and influence transgression into adjacent uplands.

    Article  CAS  Google Scholar 

  25. McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

    Article  Google Scholar 

  26. Rodriguez, A. B. et al. Oyster reefs can outpace sea-level rise. Nat. Clim. Change 4, 493–497 (2014).

    Article  Google Scholar 

  27. Sallenger, A. H. S., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2, 884–888 (2012).

    Article  Google Scholar 

  28. Craft, C. B. Tidal freshwater forest accretion does not keep pace with sea level rise. Glob. Change Biol. 18, 3615–3623 (2012).

    Article  Google Scholar 

  29. Ross, M. S., O’Brien, J. J. & Sternberg, S. L. Sea-level rise and the reduction in pine forests in the Florida Keys. Ecol. Appl. 4, 144–156 (1994).

    Article  Google Scholar 

  30. Williams, K. et al. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–2063 (1999). Recruit failure precedes mortality of adult trees in retreating coastal forests.

    Article  Google Scholar 

  31. Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).

    Article  CAS  Google Scholar 

  32. Brinson, M. M., Christian, R. R. & Blum, L. K. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries Coasts 18, 648–659 (1995). Changes in marsh size determined by the balance between erosion and forest retreat.

    Article  CAS  Google Scholar 

  33. Wasson, K., Woolfolk, A. & Fresquez, C. Ecotones as indicators of changing environmental conditions: rapid migration of salt marsh-upland boundaries. Estuaries Coasts 36, 654–664 (2013).

    Article  CAS  Google Scholar 

  34. Field, C. R., Gjerdrum, C. & Elphick, C. S. Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biol. Conserv. 201, 363–369 (2016).

    Article  Google Scholar 

  35. Hussein, A. H. Modeling of sea-level rise and deforestation in submerging coastal ultisols of Chesapeake Bay. Soil Sci. Soc. Am. J. 73, 185–196 (2009).

    Article  CAS  Google Scholar 

  36. Clark, J. S. Coastal forest tree populations in a changing environment, Southeastern Long Island, New York. Ecol. Monogr. 56, 259–277 (1986).

    Article  Google Scholar 

  37. Anisfeld, S. C., Cooper, K. R. & Kemp, A. C. Upslope development of a tidal marsh as a function of upland land use. Glob. Chang. Biol. 23, 755–766 (2017). Marsh vegetation develops rapidly in submerging suburban lawns and is not inhibited by mowing.

    Article  Google Scholar 

  38. Bhattachan, A. et al. Sea level rise impacts on rural coastal social-ecological systems and the implications for decision making. Environ. Sci. Policy 90, 122–134 (2018).

    Article  Google Scholar 

  39. Ardón, M., Morse, J. L., Colman, B. P. & Bernhardt, E. S. Drought-induced saltwater incursion leads to increased wetland nitrogen export. Glob. Chang. Biol. 19, 2976–2985 (2013).

    Article  Google Scholar 

  40. Da Lio, C., Carol, E., Kruse, E., Teatini, P. & Tosi, L. Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: an assessment of vulnerability. Sci. Total Environ. 533, 356–369 (2015).

    Article  CAS  Google Scholar 

  41. Vanderplank, S., Ezcurra, E., Delgadillo, J., Felger, R. & McDade, L. A. Conservation challenges in a threatened hotspot: agriculture and plant biodiversity losses in Baja California, Mexico. Biodivers. Conserv. 23, 2173–2182 (2014).

    Article  Google Scholar 

  42. Khanom, T. Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean Coast. Manag. 130, 205–212 (2016).

    Article  Google Scholar 

  43. Kang, L., Ma, L. & Liu, Y. Evaluation of farmland losses from sea level rise and storm surges in the Pearl River Delta region under global climate change. J. Geogr. Sci. 26, 439–456 (2016).

    Article  Google Scholar 

  44. Wassmann, R., Hien, N. X., Hoanh, C. T. & Tuong, T. P. Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Climatic Chang. 66, 89–107 (2004).

    Article  Google Scholar 

  45. Teobaldelli, M., Mencuccini, M. & Piussi, P. Water table salinity, rainfall and water use by umbrella pine trees (Pinus pinea L.). Plant Ecol. 171, 23–33 (2004).

    Article  Google Scholar 

  46. Begin, Y. The effects of shoreline transgression on woody plants, Upper St. Lawrence Estuary, Québec. J. Coast. Res. 6, 815–827 (1990).

    Google Scholar 

  47. Fernandes, A., Rollinson, C. R., Kearney, W. S., Dietze, M. C. & Fagherazzi, S. Declining radial growth response of coastal forests to hurricanes and nor’easters. J. Geophys. Res. Biogeosci. 123, 82–849 (2018).

    Article  Google Scholar 

  48. Kirwan, M. L., Kirwan, J. L. & Copenheaver, C. A. Dynamics of an estuarine forest and its response to rising sea level. J. Coast. Res. 23, 457–463 (2007).

    Article  Google Scholar 

  49. Tate, A. S. & Battaglia, L. L. Community disassembly and reassembly following experimental storm surge and wrack application. J. Veg. Sci. 24, 46–57 (2013).

    Article  Google Scholar 

  50. Gedan, K. B. & Fernández-Pascual, E. Salt marsh migration into salinized agricultural fields: a novel assembly of plant communities. J. Veg. Sci. (in press).

  51. Pezeshki, S. R., DeLaune, R. D. & Patrick, W. H. Jr. Flooding and saltwater intrusion: potential effects on survival and productivity of wetland forests along the US Gulf Coast. Ecol. Manag. 33, 287–301 (1990).

    Article  Google Scholar 

  52. Barrett-Lennard, E. G. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253, 35–54 (2003).

    Article  CAS  Google Scholar 

  53. Conner, W. H. The effect of salinity and waterlogging on growth and survival of baldcypress and Chinese tallow seedlings. J. Coast. Res. 10, 1045–1049 (1994).

    Google Scholar 

  54. Desantis, L. R., Bhotika, S., Williams, K. & Putz, F. E. Sea-level rise and drought interactions accelerate forest decline on the Gulf Coast of Florida, USA. Glob. Chang. Biol. 13, 2349–2360 (2007).

    Article  Google Scholar 

  55. Hosseini, M. K., Powell, A. A. & Bingham, I. J. Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci. Res. 12, 165–172 (2002).

    Article  CAS  Google Scholar 

  56. Ashraf, M. & Waheed, A. Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant Soil 128, 167–176 (1990).

    Article  CAS  Google Scholar 

  57. Tolliver, K. S., Malxin, D. W. & Young, D. R. Freshwater and saltwater flooding response for woody species common to barrier island swales. Wetlands 17, 10–18 (1997).

    Article  Google Scholar 

  58. Katerji, N., Mastrorilli, M., Lahmer, F. Z. & Oweis, T. Emergence rate as a potential indicator of crop salt-tolerance. Eur. J. Agron. 38, 1–9 (2012).

    Article  Google Scholar 

  59. Tanji, K. K. & Kielen, N. C. Agricultural drainage water management in arid and semi-arid areas (FAO, 2002).

  60. Chapman, E. L. et al. Hurricane Katrina impacts on forest trees of Louisiana’s Pearl River basin. Ecol. Manag. 256, 883–889 (2008).

    Article  Google Scholar 

  61. Middleton, B. A. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid-Atlantic Coast, USA. Ecol. Eng. 87, 62–70 (2016).

    Article  Google Scholar 

  62. Yu, X. et al. Impact of topography on groundwater salinization due to ocean surge inundation. Water Resour. Res. 52, 5794–5812 (2016).

    Article  Google Scholar 

  63. Elsayed, S. M. & Oumeraci, H. Modelling and mitigation of storm-induced saltwater intrusion: improvement of the resilience of coastal aquifers against marine floods by subsurface drainage. Environ. Model. Soft. 100, 252–277 (2018).

    Article  Google Scholar 

  64. Poulter, B., Goodall, J. L. & Halpin, P. N. Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise. J. Hydrol. 357, 207–217 (2008).

    Article  Google Scholar 

  65. Craft, C. et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).

    Article  Google Scholar 

  66. Jordan, T. E. & Weller, D. E. Human contributions to terrestrial nitrogen flux. BioScience 46, 655–664 (1996).

    Article  Google Scholar 

  67. Tully, K., Weissman, D., Wyner, W. J., Miller, J. & Jordan, T. E. Soils in transition: saltwater intrusion alters soil chemistry in agricultural fields. Biogeochemistry 142, 339–356 (2019).

    Article  CAS  Google Scholar 

  68. Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).

    Article  Google Scholar 

  69. Cook, C. E., McCluskey, A. M. & Chambers, R. M. Impacts of invasive Phragmites australis on diamondback terrapin nesting in Chesapeake Bay. Estuaries Coasts 41, 966–973 (2018).

    Article  Google Scholar 

  70. Field, C. R. et al. High-resolution tide projections reveal extinction threshold in response to sea-level rise. Glob. Chang. Biol. 23, 2058–2070 (2017).

    Article  Google Scholar 

  71. Spector, T. & Putz, F. E. Biomechanical plasticity facilitates invasion of maritime forests in the southern USA by Brazilian pepper (Schinus terebinthifolius). Biol. Invasions 8, 255–260 (2006).

    Article  Google Scholar 

  72. Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

    Article  Google Scholar 

  73. Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    Article  CAS  Google Scholar 

  74. Crosby, S. C. et al. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 181, 93–99 (2016).

    Article  Google Scholar 

  75. Dahl, T. E. & Stedman, S. M. Status and trends of wetlands in the coastal watersheds of the Conterminous United States 2004 to 2009 (US Department of the Interior, Fish and Wildlife Service & National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2013).

  76. Kirwan, M. L., Walters, D. C., Reay, W. G. & Carr, J. A. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43, 4366–4373 (2016).

    Article  Google Scholar 

  77. Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Evol. 14, 307–316 (2016). Large areas of land are available for migration on the Gulf Coast, but with large geographic variability due to anthropogenic and topographic barriers.

    Article  Google Scholar 

  78. Schile, L. M. et al. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 9, e88760 (2014).

    Article  CAS  Google Scholar 

  79. Cadol, D., Elmore, A., Guinn, S., Engelhardt, K. A. M. & Sanders, G. Modeled tradeoffs between developed land protection and tidal habitat maintenance during rising sea levels. PLoS ONE 11, e0164875 (2016).

    Article  CAS  Google Scholar 

  80. Torio, D. D. & Chmura, G. L. Assessing coastal squeeze of tidal wetlands. J. Coast. Res. 29, 1049–1061 (2013).

    Article  Google Scholar 

  81. Thorne, K. et al. US Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).

    Article  Google Scholar 

  82. Borchert, S. M., Osland, M. J., Enwright, N. M. & Griffith, K. T. Coastal wetland adaption to sea level rise: quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 55, 2876–2877 (2018).

    Article  Google Scholar 

  83. Schuerch, M. et al. Future response of global coastal wetlands to sea level rise. Nature 561, 231–234 (2018). Marsh loss is not inevitable but depends on anthropogenic barriers to marsh migration.

    Article  CAS  Google Scholar 

  84. Temmerman, S. et al. Ecosystem-based coastal defense in the face of global change. Nature 504, 79–83 (2013).

    Article  CAS  Google Scholar 

  85. Mitchell, M., Herman, J., Bilkovic, D. M. & Hershner, C. Marsh persistence under sea-level rise is controlled by multiple, geologically variable stressors. Ecosyst. Health Sustain. 3, 1379888 (2017).

    Article  Google Scholar 

  86. Titus, J. G. et al. State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast. Environ. Res. Lett. 4, 044008 (2009).

    Article  Google Scholar 

  87. Gray, A., Simenstad, C. A., Bottom, D. L. & Cornwell, T. J. Contrasting functional performance of juvenile salmon habitat in recovering wetlands of the Salmon River estuary, Oregon, USA. Restor. Ecol. 10, 514–526 (2002).

    Article  Google Scholar 

  88. Williams, P. B. & Orr, M. K. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary. Restor. Ecol. 10, 527–542 (2002).

    Article  Google Scholar 

  89. Smith, J. A., Hafner, S. F. & Niles, L. J. The impact of past management practices on tidal marsh resilience to sea level rise in the Delaware Estuary. Ocean Coast. Manag. 149, 33–41 (2017).

    Article  Google Scholar 

  90. Temmerman, S. & Kirwan, M. L. Building land with a rising sea. Science 349, 588–589 (2015).

    Article  CAS  Google Scholar 

  91. Syvitski, J. P. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Article  CAS  Google Scholar 

  92. Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl Acad. Sci. USA 111, 3292–3297 (2014).

    Article  CAS  Google Scholar 

  93. Doyle, T. W. et al. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Ecol. Manag. 259, 770–777 (2010).

    Article  Google Scholar 

  94. Wong, P. P. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 5 (Cambridge Univ. Press, 2014).

  95. Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: how threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).

    Article  Google Scholar 

  96. Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    Article  CAS  Google Scholar 

  97. Schmidt, J. P., Moore, R. & Alber, M. Integrating ecosystem services and local government finances into land use planning: a case study from coastal Georgia. Landsc. Urban Plan. 122, 56–67 (2014).

    Article  Google Scholar 

  98. Voutsina, N., Seliskar, D. M. & Gallagher, J. L. The facilitative role of Kosteletzkya pentacarpos in transitioning coastal agricultural land to wetland during sea level rise. Estuaries Coasts 38, 35–44 (2015).

    Article  Google Scholar 

  99. Neal, W. J., Pilkey, O. H., Cooper, J. A. G. & Long, N. J. Why coastal regulations fail. Ocean Coast. Manag. 156, 21–34 (2018).

    Article  Google Scholar 

  100. Calil, J. et al. Aligning natural resource conservation and flood hazard mitigation in California. PLoS ONE 10, e0132651 (2015). Explores conservation and buyout programs for flood prone land.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (Coastal SEES #1426981; LTER #1237733; CAREER #1654374), and the USDA Agricultural and Food Research Initiative Competitive Program (#2018-68002-27915). SouthWings provided a flight that helped motivate the work. This is contribution no. 3827 of the Virginia Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Kirwan.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirwan, M.L., Gedan, K.B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Chang. 9, 450–457 (2019). https://doi.org/10.1038/s41558-019-0488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0488-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene