Abstract
Coastal groundwater (CGW) is a critical water resource for many communities and can be a key part of coastal ecosystems. Owing to its location, CGW faces both terrestrial and marine effects of climate change while simultaneously being impacted by anthropogenic activities. In this Review, we discuss the expected impacts of climate change on CGW and CGW-dependent ecosystems. Sea-level rise, coastal flooding increases and precipitation and aridity changes will drive alterations in the amount, chemistry and fluxes of CGW. Impacts could also arise from changes in storm and cyclone activity, land and ocean temperature rises, cryosphere melt, ocean chemistry and coastal erosion, but the overall effect is understudied. Human-induced stressors, such as groundwater extraction, will interact with climate change impacts to alter CGW at different temporal and spatial scales. CGW-associated ecosystems are expected to respond to changes in an ecosystem and site-specific manner — for example, some coastal temperate and tropical ecosystems might be more impacted by seawater intrusion owing to sea-level rise and coastal flooding, whereas others, such as coastal polar ecosystems, could be more affected by increases in cryosphere melt. A comprehensive and global CGW observatory programme is needed to better understand baseline CGW conditions, track change and support resource management.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£99.00 per year
only £8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
CIESEN. Center for International Earth Science Information Network, Columbia University. National Aggregates of Geospatial Data: Population, Landscape and Climate Estimates Version 3 (PLACE III), Palisades, NY: CIESIN (Columbia University, 2012).
Santos, I. R. et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nat. Rev. Earth Environ. 2, 307–323 (2021).
Taniguchi, M. et al. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects. Front. Environ. Sci. 7, 141 (2019).
Cho, H.-M. et al. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean. Sci. Rep. 8, 1–7 (2018).
Rahman, S., Tamborski, J. J., Charette, M. A. & Cochran, J. K. Dissolved silica in the subterranean estuary and the impact of submarine groundwater discharge on the global marine silica budget. Mar. Chem. 208, 29–42 (2019).
Zhou, Y., Sawyer, A. H., David, C. H. & Famiglietti, J. S. Fresh submarine groundwater discharge to the near‐global coast. Geophys. Res. Lett. 46, 5855–5863 (2019).
Luijendijk, E., Gleeson, T. & Moosdorf, N. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nat. Commun. 11, 1260 (2020).
Alorda-Kleinglass, A. et al. The social implications of submarine groundwater discharge from an ecosystem services perspective: a systematic review. Earth Sci. Rev. 221, 103742 (2021).
Michael, H. A., Russoniello, C. J. & Byron, L. A. Global assessment of vulnerability to sea‐level rise in topography‐limited and recharge‐limited coastal groundwater systems. Water Resour. Res. 49, 2228–2240 (2013).
Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).
Werner, A. D. & Simmons, C. T. Impact of sea‐level rise on sea water intrusion in coastal aquifers. Groundwater 47, 197–204 (2009).
Cardenas, M. B. et al. Devastation of aquifers from tsunami‐like storm surge by supertyphoon Haiyan. Geophys. Res. Lett. 42, 2844–2851 (2015).
Paldor, A. & Michael, H. Storm surges cause simultaneous salinization and freshening of coastal aquifers, exacerbated by climate change. Water Resour. Res. 57, e2020WR029213 (2021).
Holding, S. & Allen, D. M. Wave overwash impact on small islands: generalised observations of freshwater lens response and recovery for multiple hydrogeological settings. J. Hydrol. 529, 1324–1335 (2015).
Holding, S. et al. Groundwater vulnerability on small islands. Nat. Clim. Change 6, 1100–1103 (2016).
Jasechko, S., Perrone, D., Seybold, H., Fan, Y. & Kirchner, J. W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 11, 3229 (2020).
Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9, 084010 (2014).
Cao, T., Han, D. & Song, X. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. 603, 126844 (2021).
Tully, K. et al. The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience 69, 368–378 (2019).
IPCC. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).
Ruane, A. C. et al. The climatic impact‐driver framework for assessment of risk‐relevant climate information. Earth’s Future 10, e2022EF002803 (2022).
Bear, J. Hydraulics of Groundwater (Courier Corporation, 2012).
Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S. & Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3–33 (2003).
Cooper, H. Sea Water in Coastal Aquifers (US Government Printing Office, 1964).
Kim, G. & Hwang, D. W. Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring. Geophys. Res. Lett. 29, 23-21–23-24 (2002).
Li, L., Barry, D., Stagnitti, F. & Parlange, J. Y. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 35, 3253–3259 (1999).
Michael, H. A., Mulligan, A. E. & Harvey, C. F. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436, 1145–1148 (2005).
Santos, I. R., Eyre, B. D. & Huettel, M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar. Coast. Shelf Sci. 98, 1–15 (2012).
Moore, W. S. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2, 59–88 (2010).
Moore, W. S. The subterranean estuary: a reaction zone of ground water and sea water. Mar. Chem. 65, 111–125 (1999).
Slomp, C. P. & Van Cappellen, P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol. 295, 64–86 (2004).
Lecher, A. L., Chien, C.-T. & Paytan, A. Submarine groundwater discharge as a source of nutrients to the North Pacific and Arctic coastal ocean. Mar. Chem. 186, 167–177 (2016).
Cabral, A. et al. Fresh and saline submarine groundwater discharge as sources of carbon and nutrients to the Japan Sea. Mar. Chem. 249, 104209 (2023).
Mayfield, K. K. et al. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nat. Commun. 12, 148 (2021).
McKenzie, T. et al. Submarine groundwater discharge: a previously undocumented source of contaminants of emerging concern to the coastal ocean (Sydney, Australia). Mar. Pollut. Bull. 160, 111519 (2020).
Robinson, C. E. et al. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: controls on submarine groundwater discharge and chemical inputs to the ocean. Adv. Water Resour. 115, 315–331 (2018).
Yang, J., Zhang, H., Yu, X., Graf, T. & Michael, H. A. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation. Adv. Water Resour. 111, 423–434 (2018).
Bear, J., Cheng, A. H.-D., Sorek, S., Ouazar, D. & Herrera, I. Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices Vol. 14 (Springer Science & Business Media, 1999).
Rohde, R. A. & Hausfather, Z. The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).
Paldor, A., Frederiks, R.S. & Michael, H.A. Dynamic steady state in coastal aquifers is driven by multi‐scale cyclical processes, controlled by aquifer storativity. Geophys. Res. Lett. 49, GL098599 (2022).
Chang, S. W., Clement, T. P., Simpson, M. J. & Lee, K.-K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water Resour. 34, 1283–1291 (2011).
Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).
Habel, S., Fletcher, C. H., Rotzoll, K. & El-Kadi, A. I. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res. 114, 122–134 (2017).
Guimond, J., Mohammed, A., Walvoord, M., Bense, V. & Kurylyk, B. Sea-level rise and warming mediate coastal groundwater discharge in the Arctic. Environ. Res. Lett. 17, 040027 (2022).
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).
Nienhuis, J. H. & van de Wal, R. S. Projections of global delta land loss from sea‐level rise in the 21st century. Geophys. Res. Lett. 48, e2021GL093368 (2021).
Quataert, E., Storlazzi, C., Van Rooijen, A., Cheriton, O. & Van Dongeren, A. The influence of coral reefs and climate change on wave‐driven flooding of tropical coastlines. Geophys. Res. Lett. 42, 6407–6415 (2015).
Devlin, A. T. et al. Coupling of sea level and tidal range changes, with implications for future water levels. Sci. Rep. 7, 17021 (2017).
Moore, W. S. & Joye, S. B. Saltwater intrusion and submarine groundwater discharge: acceleration of biogeochemical reactions in changing coastal aquifers. Front. Earth Sci. 9, 600710 (2021).
Spiteri, C., Slomp, C. P., Charette, M. A., Tuncay, K. & Meile, C. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modeling. Geochim. Cosmochim. Acta 72, 3398–3412 (2008).
Roy, M., Martin, J. B., Cherrier, J., Cable, J. E. & Smith, C. G. Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary. Geochim. Cosmochim. Acta 74, 5560–5573 (2010).
Sanders, C. J., Santos, I. R., Barcellos, R. & Silva Filho, E. V. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise? Cont. Shelf Res. 43, 86–94 (2012).
Archana, A., Francis, C. A. & Boehm, A. B. The beach aquifer microbiome: research gaps and data needs. Front. Environ. Sci. 9, 653568 (2021).
Ruiz-González, C., Rodellas, V. & Garcia-Orellana, J. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol. Rev. 45, fuab010 (2021).
Ruiz‐González, C. et al. High spatial heterogeneity and low connectivity of bacterial communities along a Mediterranean subterranean estuary. Mol. Ecol. 31, 5745–5764 (2022).
Santoro, A. E., Francis, C. A., De Sieyes, N. R. & Boehm, A. B. Shifts in the relative abundance of ammonia‐oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ. Microbiol. 10, 1068–1079 (2008).
Moeck, C. et al. A global-scale dataset of direct natural groundwater recharge rates: a review of variables, processes and relationships. Sci. Total Environ. 717, 137042 (2020).
Green, T. et al. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).
Okuhata, B. et al. Effects of multiple drivers of environmental change on native and invasive macroalgae in nearshore groundwater dependent ecosystems. Water Resour. Res. 59, e2023WR034593 (2023).
Stigter, T. et al. Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean. Reg. Environ. Change 14, 41–56 (2014).
Bryan, E., Meredith, K. T., Baker, A., Post, V. E. & Andersen, M. S. Island groundwater resources, impacts of abstraction and a drying climate: Rottnest Island, Western Australia. J. Hydrol. 542, 704–718 (2016).
Tashie, A. M., Mirus, B. B. & Pavelsky, T. M. Identifying long‐term empirical relationships between storm characteristics and episodic groundwater recharge. Water Resour. Res. 52, 21–35 (2016).
Jasechko, S. & Taylor, R. G. Intensive rainfall recharges tropical groundwaters. Environ. Res. Lett. 10, 124015 (2015).
Adyasari, D., Montiel, D., Mortazavi, B. & Dimova, N. Storm-driven fresh submarine groundwater discharge and nutrient fluxes from a barrier island. Front. Mar. Sci. 8, 679010 (2021).
Oehler, T. et al. Seasonal variability of land–ocean groundwater nutrient fluxes from a tropical karstic region (southern Java, Indonesia). J. Hydrol. 565, 662–671 (2018).
Lam, Q., Meon, G. & Pätsch, M. Coupled modelling approach to assess effects of climate change on a coastal groundwater system. Groundw. Sustain. Dev. 14, 100633 (2021).
Beven, K. J. Rainfall-runoff modelling: the primer. Hydrol. Sci. J. 46, 1002–1002 (2001).
Skougaard Kaspersen, P., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H. & Drews, M. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding. Hydrol. Earth Syst. Sci. 21, 4131–4147 (2017).
Peña, F. et al. Compound flood modeling framework for surface–subsurface water interactions. Nat. Hazards Earth Syst. Sci. 22, 775–793 (2022).
Levintal, E. et al. Agricultural managed aquifer recharge (Ag-MAR) — a method for sustainable groundwater management: a review. Crit. Rev. Environ. Sci. Technol. 53, 291–314 (2023).
Serinaldi, F., Loecker, F., Kilsby, C. G. & Bast, H. Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes. Nat. Hazards 94, 71–92 (2018).
McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).
Budyko, M. I. Climate and Life (Elsevier, 1974).
Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).
Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y. & Allen, S. T. Global recharge data set indicates strengthened groundwater connection to surface fluxes. Geophys. Res. Lett. 49, e2022GL099010 (2022).
McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J. Hydrol. 416, 182–205 (2012).
Diego-Feliu, M. et al. Extreme precipitation events induce high fluxes of groundwater and associated nutrients to coastal ocean. Hydrol. Earth Syst. Sci. 26, 4619–4635 (2022).
Santos, I. R., de Weys, J., Tait, D. R. & Eyre, B. D. The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuar. Coast. 36, 56–73 (2013).
Katazakai, S. & Zhang, J. A shift from snow to rain in midlatitude Japan increases fresh submarine groundwater discharge and doubled inorganic carbon flux over 20 years. Environ. Sci. Technol. 55, 14667–14675 (2021).
McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 11, 1279 (2020).
Charette, M. A. & Sholkovitz, E. R. Trace element cycling in a subterranean estuary: part 2. Geochemistry of the pore water. Geochim. Cosmochim. Acta 70, 811–826 (2006).
Santos, I. R. et al. Uranium and barium cycling in a salt wedge subterranean estuary: the influence of tidal pumping. Chem. Geol. 287, 114–123 (2011).
Roy, M., Martin, J. B., Cable, J. E. & Smith, C. G. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by inter-annual variations in recharge. Geochim. Cosmochim. Acta 103, 301–315 (2013).
Hu, C., Muller‐Karger, F. E. & Swarzenski, P. W. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025449 (2006).
Cho, H.-M. et al. Estimating submarine groundwater discharge in Jeju volcanic island (Korea) during a typhoon (Kong-rey) using humic-fluorescent dissolved organic matter-Si mass balance. Sci. Rep. 11, 941 (2021).
Sugimoto, R. et al. Seasonal changes in submarine groundwater discharge and associated nutrient transport into a tideless semi-enclosed embayment (Obama Bay, Japan). Estuar. Coast. 39, 13–26 (2016).
Douglas, A. R. et al. Organic matter composition and inorganic nitrogen response to Hurricane Harvey’s negative storm surge in Corpus Christi Bay, Texas. Front. Mar. Sci. 9, 961206 (2022).
Smith, C. G., Cable, J. E. & Martin, J. B. Episodic high intensity mixing events in a subterranean estuary: effects of tropical cyclones. Limnol. Oceanogr. 53, 666–674 (2008).
Terry, J. P. & Falkland, A. C. Responses of Atoll freshwater lenses to storm-surge overwash in the Northern Cook Islands. Hydrogeol. J. 18, 749 (2010).
Anderson, W. P. Aquifer salinization from storm overwash. J. Coast. Res. 18, 413–420 (2002).
Nordio, G. et al. Frequent storm surges affect the groundwater of coastal ecosystems. Geophys. Res. Lett. 50, e2022GL100191 (2023).
Storlazzi, C. D. et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 4, eaap9741 (2018).
Benz, S. A., Bayer, P. & Blum, P. Global patterns of shallow groundwater temperatures. Environ. Res. Lett. 12, 034005 (2017).
Benz, S. A. et al. Global groundwater warming. Preprint at https://doi.org/10.31223/X5Q64H (2022).
Hemmerle, H. & Bayer, P. Climate change yields groundwater warming in Bavaria, Germany. Front. Earth Sci. https://doi.org/10.3389/feart.2020.575894 (2020).
Lee, B., Hamm, S.-Y., Jang, S., Cheong, J.-Y. & Kim, G.-B. Relationship between groundwater and climate change in South Korea. Geosci. J. 18, 209–218 (2014).
Henry, H. & Kohout, F. in Underground Waste Management and Environmental Implications 202–221 (GeoScienceWorld,1972); https://doi.org/10.1306/M18373C19.
Freeze, R. & Cherry, J. A. Groundwater. Vol. 7632, 604 (Prentice-Hall Inc., 1979).
Kelly, J. L., Glenn, C. R. & Lucey, P. G. High‐resolution aerial infrared mapping of groundwater discharge to the coastal ocean. Limnol. Oceanogr. Methods 11, 262–277 (2013).
Portnoy, J., Nowicki, B., Roman, C. & Urish, D. The discharge of nitrate‐contaminated groundwater from developed shoreline to marsh‐fringed estuary. Water Resour. Res. 34, 3095–3104 (1998).
Miller, D. C. & Ullman, W. J. Ecological consequences of ground water discharge to Delaware Bay, United States. Groundwater 42, 959–970 (2004).
Danielescu, S., MacQuarrie, K. T. & Faux, R. N. The integration of thermal infrared imaging, discharge measurements and numerical simulation to quantify the relative contributions of freshwater inflows to small estuaries in Atlantic Canada. Hydrol. Process. 23, 2847–2859 (2009).
Coluccio, K. et al. Mapping groundwater discharge to a coastal lagoon using combined spatial airborne thermal imaging, radon (222Rn) and multiple physicochemical variables. Hydrol. Process. 34, 4592–4608 (2020).
Lee, E. et al. Unmanned aerial vehicles (UAVs)‐based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone. Limnol. Oceanogr. Methods 14, 725–735 (2016).
Jou-Claus, S., Folch, A. & Garcia-Orellana, J. Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin. Hydrol. Earth Syst. Sci. 25, 4789–4805 (2021).
Pu, L. et al. Thermal effects on flow and salinity distributions in coastal confined aquifers. Water Resour. Res. 56, e2020WR027582 (2020).
van Lopik, J. H., Hartog, N., Zaadnoordijk, W. J., Cirkel, D. G. & Raoof, A. Salinization in a stratified aquifer induced by heat transfer from well casings. Adv. Water Resour. 86, 32–45 (2015).
Pu, L., Xin, P., Yu, X., Li, L. & Barry, D. A. Temperature of artificial freshwater recharge significantly affects salinity distributions in coastal confined aquifers. Adv. Water Resour. 156, 104020 (2021).
Nguyen, T. T. et al. Effects of temperature on tidally influenced coastal unconfined aquifers. Water Resour. Res. 56, e2019WR026660 (2020).
Ahrens, J. et al. Seasonality of organic matter degradation regulates nutrient and metal net fluxes in a high energy sandy beach. J. Geophys. Res. Biogeosci. 125, e2019JG005399 (2020).
Degenhardt, J. et al. Seasonal dynamics of microbial diversity at a sandy high energy beach reveal a resilient core community. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.573570 (2020).
Riedel, T. Temperature-associated changes in groundwater quality. J. Hydrol. 572, 206–212 (2019).
Figura, S. The Impact of Climate Change on Groundwater Temperature and Oxygen Concentration in Swiss Aquifers (ETH Zurich, 2013).
Hall, E. K., Neuhauser, C. & Cotner, J. B. Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems. ISME J. 2, 471–481 (2008).
Adyasari, D., Hassenrück, C., Oehler, T., Sabdaningsih, A. & Moosdorf, N. Microbial community structure associated with submarine groundwater discharge in northern Java (Indonesia). Sci. Total Environ. 689, 590–601 (2019).
Jiang, S. et al. Organic carbon in a seepage face of a subterranean estuary: turnover and microbial interrelations. Sci. Total Environ. 725, 138220 (2020).
Velasco Ayuso, S., Acebes, P., López-Archilla, A. I., Montes, C. & Guerrero, M. D. C. Environmental factors controlling the spatiotemporal distribution of microbial communities in a coastal, sandy aquifer system (Doñana, southwest Spain). Hydrogeol. J. 17, 767–780 (2009).
Cogswell, C. & Heiss, J. W. Climate and seasonal temperature controls on biogeochemical transformations in unconfined coastal aquifers. J. Geophys. Res. Biogeosci. 126, e2021JG006605 (2021).
Oehler, T. et al. Tropical beaches attenuate groundwater nitrogen pollution flowing to the ocean. Environ. Sci. Technol. 55, 8432–8438 (2021).
Flynn, T. M. et al. Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol. 13, 1–15 (2013).
Hunter, K. S., Wang, Y. & Van Cappellen, P. Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Hydrol. 209, 53–80 (1998).
Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar. Coast. 35, 383–400 (2012).
Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zone J. 15, 1–20 (2016).
Woo, M.-K. Permafrost Hydrology (Springer Science & Business Media, 2012).
Dimova, N. T. et al. Current magnitude and mechanisms of groundwater discharge in the Arctic: case study from Alaska. Environ. Sci. Technol. 49, 12036–12043 (2015).
Watanabe, K. & Osada, Y. Comparison of hydraulic conductivity in frozen saturated and unfrozen unsaturated soils. Vadose Zone J. https://doi.org/10.2136/vzj2015.11.0154 (2016).
Koch, J. C., Kikuchi, C. P., Wickland, K. P. & Schuster, P. Runoff sources and flow paths in a partially burned, upland boreal catchment underlain by permafrost. Water Resour. Res. 50, 8141–8158 (2014).
Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L. & Zipper, S. C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 13, 084017 (2018).
O’Connor, M. T., Cardenas, M. B., Neilson, B. T., Nicholaides, K. D. & Kling, G. W. Active layer groundwater flow: the interrelated effects of stratigraphy, thaw, and topography. Water Resour. Res. 55, 6555–6576 (2019).
Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).
Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Reyes, F. R. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arctic Antarctic Alp. Res. 47, 35–48 (2015).
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Wickland, K. P. et al. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ. Res. Lett. 13, 065011 (2018).
Connolly, C. T., Cardenas, M. B., Burkart, G. A., Spencer, R. G. & McClelland, J. W. Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nat. Commun. 11, 1479 (2020).
Lecher, A. L. Groundwater discharge in the Arctic: a review of studies and implications for biogeochemistry. Hydrology 4, 41 (2017).
Levy, A., Robinson, Z., Krause, S., Waller, R. & Weatherill, J. Long‐term variability of proglacial groundwater‐fed hydrological systems in an area of glacier retreat, Skeiðarársandur, Iceland. Earth Surf. Process. Landf. 40, 981–994 (2015).
Liljedahl, A., Gädeke, A., O’Neel, S., Gatesman, T. & Douglas, T. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).
Piotrowski, J. A. Groundwater under ice sheets and glaciers. in Glacier Science and Environmental Change 50–60 (Blackwell Science, 2006).
Uemura, T., Taniguchi, M. & Shibuya, K. Submarine groundwater discharge in Lützow‐Holm Bay, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2010GL046394 (2011).
Null, K. A. et al. Groundwater discharge to the western Antarctic coastal ocean. Polar Res. 38, 3497 (2019).
Falk, U. & Silva-Busso, A. Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula. Hydrol. Earth Syst. Sci. 25, 3227–3244 (2021).
Gustafson, C. D. et al. A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science 376, 640–644 (2022).
Liljedahl, L. C. et al. Rapid and sensitive response of Greenland’s groundwater system to ice sheet change. Nat. Geosci. 14, 751–755 (2021).
Chaillou, G. et al. Flow and discharge of groundwater from a snowmelt-affected sandy beach. J. Hydrol. 557, 4–15 (2018).
Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, GL048681 (2011).
Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799 (2014).
Sadler, H. & Serson, H. An unusual polynya in an Arctic Fjord. Fjord Oceanogr. 4, 299–304 (1980).
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).
Oliver, E. C. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021).
Calvo‐Martin, E. et al. On the hidden diversity and niche specialization of the microbial realm of subterranean estuaries. Environ. Microbiol. 24, 5859–5881 (2022).
Koski, K. & Wilson, J. Carbonate dissolution in mixed waters due to ocean acidification. In AGU Fall Meeting Abstracts GC21A-0737 (AGU, 2009).
Davis, K. L., McMahon, A., Kelaher, B., Shaw, E. & Santos, I. R. Fifty years of sporadic coral reef calcification estimates at One Tree Island, Great Barrier Reef: is it enough to imply long term trends? Front. Mar. Sci. 6, 282 (2019).
Moore, W. S., Vincent, J., Pickney, J. L. & Wilson, A. M. Predicted episode of submarine groundwater discharge onto the South Carolina, USA, continental shelf and its effect on dissolved oxygen. Geophys. Res. Lett. 49, e2022GL100438 (2022).
George, C. et al. A new mechanism for submarine groundwater discharge from continental shelves. Water Resour. Res. 56, e2019WR026866 (2020).
Sawyer, A. H., Shi, F., Kirby, J. T. & Michael, H. A. Dynamic response of surface water‐groundwater exchange to currents, tides, and waves in a shallow estuary. J. Geophys. Res. Ocean. 118, 1749–1758 (2013).
Rodellas, V. et al. Temporal variations in porewater fluxes to a coastal lagoon driven by wind waves and changes in lagoon water depths. J. Hydrol. 581, 124363 (2020).
Guimond, J. D. C., Kurylyk, B., Walvoord, M., McClelland, J. & Cardenas, M. Wind-modulated groundwater discharge along a microtidal Arctic coastline. Environ. Res. Lett. 18, 094042 (2023).
Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).
Chesnaux, R., Marion, D., Boumaiza, L., Richard, S. & Walter, J. An analytical methodology to estimate the changes in fresh groundwater resources with sea-level rise and coastal erosion in strip-island unconfined aquifers: illustration with Savary Island, Canada. Hydrogeol. J. https://doi.org/10.1007/s10040-020-02300-0 (2021).
Liu, Q., Liang, L., Yuan, X., Mou, X. & Su, L. Effects of groundwater level changes associated with coastline changes in coastal wetlands. Wetlands 40, 1647–1656 (2020).
Zhang, Y., Li, L., Erler, D. V., Santos, I. & Lockington, D. Effects of beach slope breaks on nearshore groundwater dynamics. Hydrol. Process. 31, 2530–2540 (2017).
Rakhimbekova, S., Power, C., O’Carroll, D. M. & Robinson, C. E. Potential for shoreline recession to accelerate discharge of groundwater pollutants to coastal waters. Water Resour. Res. 59, e2022WR034230 (2022).
Santi, P., Cannon, S., DeGraff, J. & Shroder, J. Wildfire and landscape change. Treatise Geomorphol. 13, 262–287 (2013).
Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).
Smith, H. G., Sheridan, G. J., Lane, P. N., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).
Maina, F. Z. & Siirila‐Woodburn, E. R. Watersheds dynamics following wildfires: nonlinear feedbacks and implications on hydrologic responses. Hydrol. Process. 34, 33–50 (2020).
Bogan, R. A., Ohde, S., Arakaki, T., Mori, I. & McLeod, C. W. Changes in rainwater pH associated with increasing atmospheric carbon dioxide after the industrial revolution. Water Air Soil Pollut. 196, 263–271 (2009).
Andrews, J. A. & Schlesinger, W. H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob. Biogeochem. Cycles 15, 149–162 (2001).
Hendry, A. et al. Assessing the characteristics and drivers of compound flooding events around the UK coast. Hydrol. Earth Syst. Sci. 23, 3117–3139 (2019).
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).
Bloomfield, J. P., Marchant, B. P. & McKenzie, A. A. Changes in groundwater drought associated with anthropogenic warming. Hydrol. Earth Syst. Sci. 23, 1393–1408 (2019).
Guimond, J. A., Mohammed, A. A., Walvoord, M. A., Bense, V. F. & Kurylyk, B. L. Saltwater intrusion intensifies coastal permafrost thaw. Geophys. Res. Lett. 48, e2021GL094776 (2021).
Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).
McMillan, S. K. et al. Before the storm: antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events. Biogeochemistry 141, 487–501 (2018).
Vidon, P., Marchese, S. & Rook, S. Impact of Hurricane Irene and Tropical Storm Lee on riparian zone hydrology and biogeochemistry. Hydrol. Process. 31, 476–488 (2017).
Befus, K., Barnard, P. L., Hoover, D. J., Finzi Hart, J. & Voss, C. I. Increasing threat of coastal groundwater hazards from sea-level rise in California. Nat. Clim. Change 10, 946–952 (2020).
Habel, S., Fletcher, C. H., Anderson, T. R. & Thompson, P. R. Sea-level rise induced multi-mechanism flooding and contribution to urban infrastructure failure. Sci. Rep. 10, 3796 (2020).
Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A. & Kurylyk, B. L. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review. Water Resour. Res. 58, e2022WR032614 (2022).
Hingst, M. C. et al. Surface water–groundwater connections as pathways for inland salinization of coastal aquifers. Groundwater https://doi.org/10.1111/gwat.13274 (2022).
Yu, X. et al. Impact of topography on groundwater salinization due to ocean surge inundation. Water Resour. Res. 52, 5794–5812 (2016).
Chui, T. F. M. & Terry, J. P. Modeling fresh water lens damage and recovery on atolls after storm‐wave washover. Groundwater 50, 412–420 (2012).
Post, V. E. & Houben, G. J. Density-driven vertical transport of saltwater through the freshwater lens on the island of Baltrum (Germany) following the 1962 storm flood. J. Hydrol. 551, 689–702 (2017).
Yang, J., Graf, T., Herold, M. & Ptak, T. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface–subsurface approach. J. Contam. Hydrol. 149, 61–75 (2013).
Bailey, R. T. & Jenson, J. W. Effects of marine overwash for atoll aquifers: environmental and human factors. Groundwater 52, 694–704 (2014).
Holding, S. & Allen, D. From days to decades: numerical modelling of freshwater lens response to climate change stressors on small low-lying islands. Hydrol. Earth Syst. Sci. 19, 933–949 (2015).
Panthi, J., Pradhanang, S. M., Nolte, A. & Boving, T. B. Saltwater intrusion into coastal aquifers in the contiguous United States — a systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 836, 155641 (2022).
Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2, 342–345 (2012).
Rachid, G., Alameddine, I. & El-Fadel, M. Management of saltwater intrusion in data-scarce coastal aquifers: impacts of seasonality, water deficit, and land use. Water Resour. Manag. 35, 5139–5153 (2021).
Ranjan, S. P., Kazama, S. & Sawamoto, M. Effects of climate and land use changes on groundwater resources in coastal aquifers. J. Environ. Manag. 80, 25–35 (2006).
Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).
Yang, J., Graf, T. & Ptak, T. Sea level rise and storm surge effects in a coastal heterogeneous aquifer: a 2D modelling study in northern Germany. Grundwasser 20, 39–51 (2015).
Carlson, D. A., Van Biersel, T. P. & Milner, L. R. Storm‐damaged saline‐contaminated boreholes as a means of aquifer contamination. Groundwater 46, 69–79 (2008).
Illangasekare, T. et al. Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour. Res. https://doi.org/10.1029/2006WR004876 (2006).
Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353, 705–707 (2016).
Kwon, E., Park, J., Park, W.-B., Kang, B.-R. & Woo, N. C. Nitrate contamination of coastal groundwater: sources and transport mechanisms along a volcanic aquifer. Sci. Total Environ. 768, 145204 (2021).
Bishop, J. M., Glenn, C. R., Amato, D. W. & Dulai, H. Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. J. Hydrol. Regional Stud. 11, 194–218 (2017).
Bosserelle, A. L., Morgan, L. K. & Hughes, M. W. Groundwater rise and associated flooding in coastal settlements due to sea‐level rise: a review of processes and methods. Earth’s Future 10, e2021EF002580 (2022).
Tay, C. et al. Sea-level rise from land subsidence in major coastal cities. Nat. Sustain. 5, 1–9 (2022).
Anderson, T. R. et al. Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. Sci. Rep. 8, 1–14 (2018).
Becker, B., Reichel, F., Bachmann, D. & Schinke, R. High groundwater levels: processes, consequences, and management. Wiley Interdiscip. Rev. Water 9, e1605 (2022).
Habel, S., Fletcher, C. H., Barbee, M. M. & Fornace, K. L. Hidden threat: the influence of sea-level rise on coastal groundwater and the convergence of impacts on municipal infrastructure. Ann. Rev. Marine Sci. https://doi.org/10.1146/annurev-marine-020923-120737 (2023).
Gold, A. C., Brown, C. M., Thompson, S. P. & Piehler, M. F. Inundation of stormwater infrastructure is common and increases risk of flooding in coastal urban areas along the US Atlantic coast. Earth’s Future 10, e2021EF002139 (2022).
Jasour, Z. Y., Reilly, A. C., Tonn, G. L. & Ferreira, C. M. Roadway flooding as a bellwether for household retreat in rural, coastal regions vulnerable to sea-level rise. Clim. Risk Manag. 36, 100425 (2022).
Ju, Y., Lindbergh, S., He, Y. & Radke, J. D. Climate-related uncertainties in urban exposure to sea level rise and storm surge flooding: a multi-temporal and multi-scenario analysis. Cities 92, 230–246 (2019).
Su, X., Liu, T., Beheshti, M. & Prigiobbe, V. Relationship between infiltration, sewer rehabilitation, and groundwater flooding in coastal urban areas. Environ. Sci. Pollut. Res. 27, 14288–14298 (2020).
Threndyle, R. E., Jamieson, R. C., Kennedy, G., Lake, C. B. & Kurylyk, B. L. Future inundation of coastal on-site wastewater treatment systems in a region with pronounced sea-level rise. J. Hydrol. 614, 128548 (2022).
McKenzie, T., Habel, S. & Dulai, H. Sea‐level rise drives wastewater leakage to coastal waters and storm drains. Limnol. Oceanogr. Lett. 6, 154–163 (2021).
Hummel, M. A., Berry, M. S. & Stacey, M. T. Sea level rise impacts on wastewater treatment systems along the US coasts. Earth’s Future 6, 622–633 (2018).
Connolly, C. T., Stahl, M. O., DeYoung, B. A. & Bostick, B. C. Surface flooding as a key driver of groundwater arsenic contamination in Southeast Asia. Environ. Sci. Technol. 56, 928–937 (2021).
Graham, J. P. & Polizzotto, M. L. Pit latrines and their impacts on groundwater quality: a systematic review. Environ. Health Perspect. 121, 521–530 (2013).
Gowrisankar, G. et al. Chemical, microbial and antibiotic susceptibility analyses of groundwater after a major flood event in Chennai. Sci. Data 4, 1–13 (2017).
Nicholls, R. J. et al. Coastal landfills and rising sea levels: a challenge for the 21st century. Front. Mar. Sci. 8, 710342 (2021).
Xie, D., Zou, Q.-P., Mignone, A. & MacRae, J. D. Coastal flooding from wave overtopping and sea level rise adaptation in the northeastern USA. Coast. Eng. 150, 39–58 (2019).
Hummel, M. A., Griffin, R., Arkema, K. & Guerry, A. D. Economic evaluation of sea-level rise adaptation strongly influenced by hydrodynamic feedbacks. Proc. Natl Acad. Sci. USA 118, e2025961118 (2021).
Yang, J., Graf, T. & Ptak, T. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: a three-dimensional modeling study. J. Contam. Hydrol. 177, 107–121 (2015).
Fletcher, C. H., Mullane, R. A. & Richmond, B. M. Beach loss along armored shorelines on Oahu, Hawaiian Islands. J. Coast. Res. 13, 209–215 (1997).
Figueroa, S. M., Lee, G. H., Chang, J. & Jung, N. W. Impact of estuarine dams on the estuarine parameter space and sediment flux decomposition: idealized numerical modeling study. J. Geophys. Res. Ocean. 127, e2021JC017829 (2022).
Kidd, I. M., Davis, J. A. & Fischer, A. Total exclusion barrages as sea-level rise mitigators: the geomorphological trade-offs for new installations. Ocean Coast. Manag. 143, 122–135 (2017).
Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C. & Haruyama, S. The combined impact on the flooding in Vietnam’s Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Estuar. Coast. Shelf Sci. 71, 110–116 (2007).
Mueller, N. J. & Meindl, C. F. Vulnerability of Caribbean island cemeteries to sea level rise and storm surge. Coast. Manag. 45, 277–292 (2017).
Williams, B. A. et al. Global rarity of intact coastal regions. Conserv. Biol. 36, e13874 (2022).
Kløve, B. et al. Groundwater dependent ecosystems. Part I: hydroecological status and trends. Environ. Sci. Policy 14, 770–781 (2011).
Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).
Taillie, P. J., Moorman, C. E., Smart, L. S. & Pacifici, K. Bird community shifts associated with saltwater exposure in coastal forests at the leading edge of rising sea level. PLoS ONE 14, e0216540 (2019).
Williams, K., Ewel, K. C., Stumpf, R. P., Putz, F. E. & Workman, T. W. Sea‐level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–2063 (1999).
Kirwan, M. L., Kirwan, J. L. & Copenheaver, C. A. Dynamics of an estuarine forest and its response to rising sea level. J. Coast. Res. 23, 457–463 (2007).
Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 15, 104028 (2020).
Taillie, P. J., Moorman, C. E., Poulter, B., Ardón, M. & Emanuel, R. E. Decadal-scale vegetation change driven by salinity at leading edge of rising sea level. Ecosystems 22, 1918–1930 (2019).
Ury, E. A., Yang, X., Wright, J. P. & Bernhardt, E. S. Rapid deforestation of a coastal landscape driven by sea‐level rise and extreme events. Ecol. Appl. 31, e02339 (2021).
White, E. E., Ury, E. A., Bernhardt, E. S. & Yang, X. Climate change driving widespread loss of coastal forested wetlands throughout the North American coastal plain. Ecosystems 25, 1–16 (2021).
Liu, X. et al. Effects of salinity and wet–dry treatments on C and N dynamics in coastal-forested wetland soils: implications of sea level rise. Soil Biol. Biochem. 112, 56–67 (2017).
Eggleston, J. & McCoy, K. J. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeol. J. 23, 105–120 (2015).
Kreuzwieser, J. & Gessler, A. Global climate change and tree nutrition: influence of water availability. Tree Physiol. 30, 1221–1234 (2010).
Davis, K., Santos, I. R., Perkins, A. K., Webb, J. R. & Gleeson, J. Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal. Estuar. Coast. Shelf Sci. 235, 106567 (2020).
Kath, J. et al. Groundwater salinization intensifies drought impacts in forests and reduces refuge capacity. J. Appl. Ecol. 52, 1116–1125 (2015).
Pezeshki, S., DeLaune, R. & Patrick, W. Jr Flooding and saltwater intrusion: potential effects on survival and productivity of wetland forests along the US Gulf Coast. For. Ecol. Manag. 33, 287–301 (1990).
Guimond, J. A., Yu, X., Seyfferth, A. L. & Michael, H. A. Using hydrological–biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to relative sea level rise. Water Resour. Res. 56, e2019WR026302 (2020).
Herbert, E. R. et al. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6, 1–43 (2015).
Morina, J. C. & Franklin, R. B. Intensity and duration of exposure determine prokaryotic community response to salinization in freshwater wetland soils. Geoderma 428, 116138 (2022).
Freeman, C. et al. US Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).
Han, G. et al. Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements. Agric. For. Meteorol. 256, 292–303 (2018).
Najjar, R. G. et al. The potential impacts of climate change on the mid-Atlantic coastal region. Clim. Res. 14, 219–233 (2000).
Dale, L. L. et al. Migration and transformation of coastal wetlands in response to rising seas. Sci. Adv. 8, eabo5174 (2022).
Bishop, R. E. et al. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J. Crustacean Biol. 35, 511–514 (2015).
Gonzalez, B. C., Iliffe, T. M., Macalady, J. L., Schaperdoth, I. & Kakuk, B. Microbial hotspots in anchialine blue holes: initial discoveries from the Bahamas. Hydrobiologia 677, 149–156 (2011).
Tillman, F. D., Oki, D. S., Johnson, A. G., Barber, L. B. & Beisner, K. R. Investigation of geochemical indicators to evaluate the connection between inland and coastal groundwater systems near Kaloko-Honokōhau National Historical Park, Hawai ‘i. Appl. Geochem. 51, 278–292 (2014).
Calderón-Gutiérrez, F., Sánchez-Ortiz, C. A. & Huato-Soberanis, L. Ecological patterns in anchialine caves. PLoS ONE 13, e0202909 (2018).
Saccò, M. et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: the Australian paradigm. Freshw. Biol. 67, 2007–2023 (2022).
van Hengstum, P. J., Cresswell, J. N., Milne, G. A. & Iliffe, T. M. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci. Rep. 9, 11907 (2019).
Calderón Gutiérrez, F., Iliffe, T. M., Borda, E., Yáñez Mendoza, G. & Labonté, J. Response and resilience of karst subterranean estuary communities to precipitation impacts. Ecol. Evol. 13, e10415 (2023).
KarisAllen, J. & Kurylyk, B. L. Drone-based characterization of intertidal spring cold-water plume dynamics postprint. Hydrol. Process. https://doi.org/10.1002/hyp.14258 (2021).
Purkamo, L. et al. Impact of submarine groundwater discharge on biogeochemistry and microbial communities in pockmarks. Geochim. Cosmochim. Acta 334, 14–44 (2022).
Liu, J. & Du, J. Submarine groundwater discharge impacts on marine aquaculture: a mini review and perspective. Curr. Opin. Environ. Sci. Health 26, 100325 (2022).
Prouty, N. G. et al. Carbonate system parameters of an algal-dominated reef along West Maui. Biogeosciences 15, 2467–2480 (2018).
Richardson, C. M., Dulai, H., Popp, B. N., Ruttenberg, K. & Fackrell, J. K. Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs. Limnol. Oceanogr. 62, S348–S363 (2017).
Cyronak, T., Santos, I. R., Erler, D. V. & Eyre, B. D. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands). Biogeosciences 10, 2467–2480 (2013).
Crook, E., Potts, D., Rebolledo-Vieyra, M., Hernandez, L. & Paytan, A. Calcifying coral abundance near low-pH springs: implications for future ocean acidification. Coral Reefs 31, 239–245 (2012).
Wang, G. et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system. Environ. Sci. Technol. 48, 13069–13075 (2014).
Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).
Schönberg, C. H., Fang, J. K., Carreiro-Silva, M., Tribollet, A. & Wisshak, M. Bioerosion: the other ocean acidification problem. ICES J. Mar. Sci. 74, 895–925 (2017).
Yang, G. et al. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands. Atmos. Environ. 152, 323–329 (2017).
Lecher, A. L. & Mackey, K. R. Synthesizing the effects of submarine groundwater discharge on marine biota. Hydrology 5, 60 (2018).
Amato, D. W., Bishop, J. M., Glenn, C. R., Dulai, H. & Smith, C. M. Impact of submarine groundwater discharge on marine water quality and reef biota of Maui. PLoS ONE 11, e0165825 (2016).
Smith, C. G. & Swarzenski, P. W. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol. Oceanogr. 57, 471–485 (2012).
Garcés, E., Basterretxea, G. & Tovar-Sánchez, A. Changes in microbial communities in response to submarine groundwater input. Mar. Ecol. Prog. Ser. 438, 47–58 (2011).
Montiel, D., Lamore, A., Stewart, J. & Dimova, N. Is submarine groundwater discharge (SGD) important for the historical fish kills and harmful algal bloom events of Mobile Bay? Estuar. Coast. 42, 470–493 (2019).
Shoji, J. & Tominaga, O. The Water-Energy-Food Nexus 117–131 (Springer, 2018).
Starke, C., Ekau, W. & Moosdorf, N. Enhanced productivity and fish abundance at a submarine spring in a coastal lagoon on Tahiti, French Polynesia. Front. Mar. Sci. 6, 809 (2020).
Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
Crook, E. D., Cohen, A. L., Rebolledo-Vieyra, M., Hernandez, L. & Paytan, A. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc. Natl Acad. Sci. USA 110, 11044–11049 (2013).
Aguilar, C. et al. Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics 20, 1–13 (2019).
Adyasari, D. et al. Terrestrial nutrients and dissolved organic matter input to the coral reef ecosystem via submarine springs. ACS EST Water 1, 1887–1900 (2021).
Jokiel, P., Hunter, C., Taguchi, S. & Watarai, L. Ecological impact of a fresh-water ‘reef kill’ in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12, 177–184 (1993).
Shamberger, K. E., Lentz, S. J. & Cohen, A. L. Low and variable ecosystem calcification in a coral reef lagoon under natural acidification. Limnol. Oceanogr. 63, 714–730 (2018).
Dias, M. et al. Oxidative stress on scleractinian coral fragments following exposure to high temperature and low salinity. Ecol. Indic. 107, 105586 (2019).
Dulai, H., Smith, C. M., Amato, D. W., Gibson, V. & Bremer, L. L. Risk to native marine macroalgae from land‐use and climate change‐related modifications to groundwater discharge in Hawai‘i. Limnol. Oceanogr. Lett. 8, 141–153 (2023).
Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).
Parsons, M. L. et al. A multivariate assessment of the coral ecosystem health of two embayments on the lee of the island of Hawai ‘i. Mar. Pollut. Bull. 56, 1138–1149 (2008).
Costa, O. S. Jr, Nimmo, M. & Attrill, M. J. Coastal nutrification in Brazil: a review of the role of nutrient excess on coral reef demise. J. South Am. Earth Sci. 25, 257–270 (2008).
Nordemar, I., Nyström, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).
Serrano, X. M. et al. Effects of thermal stress and nitrate enrichment on the larval performance of two Caribbean reef corals. Coral Reefs 37, 173–182 (2018).
Archibald, J. P., Santos, I. R. & Davis, K. L. Diel versus tidal cycles of chromophoric dissolved organic matter (CDOM) and radon in a coral reef in the Great Barrier Reef. Regional Stud. Mar. Sci. 29, 100659 (2019).
Becker, D. M. et al. Chronic low-level nutrient enrichment benefits coral thermal performance in a fore reef habitat. Coral Reefs 40, 1637–1655 (2021).
Dunn, J. G., Sammarco, P. W. & LaFleur, G. Jr Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach. J. Exp. Mar. Biol. Ecol. 411, 34–44 (2012).
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
Dierssen, H. M., Smith, R. C. & Vernet, M. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl Acad. Sci. USA 99, 1790–1795 (2002).
Pabi, S., van Dijken, G. L. & Arrigo, K. R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. Oceans 113, JC004578 (2008).
Moore, C. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
Rozell, D. J. Overestimating coastal urban resilience: the groundwater problem. Cities 118, 103369 (2021).
Michael, H. A., Post, V. E., Wilson, A. M. & Werner, A. D. Science, society, and the coastal groundwater squeeze. Water Resour. Res. 53, 2610–2617 (2017).
Cui, D., Liang, S. & Wang, D. Observed and projected changes in global climate zones based on Köppen climate classification. Wiley Interdiscip. Rev. Clim. Change 12, e701 (2021).
Acknowledgements
We thank coastal groundwater community members for sharing their initial thoughts on climate change impacts with us (M. Saito, P. Clement, C. Shuler, S. Rahman, J. Cable, H. Bokuniewicz, C. Smith, A. Sawyer, G. Chaillou, W. Burnett, A. Wilson, K. Burnett, M. Savatier, T. McKenzie and A. Lecher) and S. Dykstra for their input. C.R.-G was supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) through the Ramon y Cajal contract (RYC2019-026758-I) with additional funding from the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S) funded by AEI 10.13039/501100011033.
Author information
Authors and Affiliations
Contributions
C.M.R., K.L.D., C.R.-G., J.A.G., H.A.M., A.P., N.M. and A.P. all contributed to the discussion of content, writing and review/editing of the paper before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Dongmei Han and Alicia Wilson for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Richardson, C.M., Davis, K.L., Ruiz-González, C. et al. The impacts of climate change on coastal groundwater. Nat Rev Earth Environ 5, 100–119 (2024). https://doi.org/10.1038/s43017-023-00500-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-023-00500-2