[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid droplets in pathogen infection and host immunity

Abstract

As the hub of cellular lipid metabolism, lipid droplets (LDs) have been linked to a variety of biological processes. During pathogen infection, the biogenesis, composition, and functions of LDs are tightly regulated. The accumulation of LDs has been described as a hallmark of pathogen infection and is thought to be driven by pathogens for their own benefit. Recent studies have revealed that LDs and their subsequent lipid mediators contribute to effective immunological responses to pathogen infection by promoting host stress tolerance and reducing toxicity. In this comprehensive review, we delve into the intricate roles of LDs in governing the replication and assembly of a wide spectrum of pathogens within host cells. We also discuss the regulatory function of LDs in host immunity and highlight the potential for targeting LDs for the diagnosis and treatment of infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LDs at a glance.
Fig. 2: The roles of LDs in viral infections.
Fig. 3: The roles of LDs in bacterial infections.
Fig. 4: The role of LDs in the host immune response.

Similar content being viewed by others

References

  1. Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol. 2023;19:443–59.

    Article  CAS  PubMed  Google Scholar 

  2. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20:137–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev. 2021;45:fuaa066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Awadh AA. The role of cytosolic lipid droplets in hepatitis C virus replication, assembly, and release. Biomed Res Int. 2023;2023:5156601.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roingeard P, Melo RC. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol. 2017;19:e12688.

  6. Bosch M, Sanchez-Alvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science. 2020;370:eaay8085.

    Article  CAS  PubMed  Google Scholar 

  7. Kiarely Souza E, Pereira-Dutra FS, Rajao MA, Ferraro-Moreira F, Goltara-Gomes TC, Cunha-Fernandes T, et al. Lipid droplet accumulation occurs early following Salmonella infection and contributes to intracellular bacterial survival and replication. Mol Microbiol. 2022;117:293–306.

    Article  CAS  PubMed  Google Scholar 

  8. Hu S, Zhao X, Li R, Hu C, Wu H, Li J, et al. Activating transcription factor 3, glucolipid metabolism, and metabolic diseases. J Mol Cell Biol. 2023;14:mjac067.

    Article  PubMed  Google Scholar 

  9. Herker E, Vieyres G, Beller M, Krahmer N, Bohnert M. Lipid droplet contact sites in health and disease. Trends Cell Biol. 2021;31:345–58.

    Article  CAS  PubMed  Google Scholar 

  10. Puza S, Caesar S, Poojari C, Jung M, Seemann R, Hub JS, et al. Lipid droplets embedded in a model cell membrane create a phospholipid diffusion barrier. Small. 2022;18:e2106524.

    Article  PubMed  Google Scholar 

  11. Prevost C, Sharp ME, Kory N, Lin Q, Voth GA, Farese RV Jr., et al. Mechanism and determinants of amphipathic helix-containing protein targeting to lipid droplets. Dev Cell. 2018;44:73–86.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid droplets as immune modulators in myeloid cells. Trends Immunol. 2018;39:380–92.

    Article  Google Scholar 

  13. Ventura AE, Pokorna S, Huhn N, Santos TCB, Prieto M, Futerman AH, et al. Cell lipid droplet heterogeneity and altered biophysical properties induced by cell stress and metabolic imbalance. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868:159347.

    Article  CAS  PubMed  Google Scholar 

  14. Tratwal J, Falgayrac G, During A, Bertheaume N, Bataclan C, Tavakol DN, et al. Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes. Front Endocrinol. 2022;13:1001210.

    Article  Google Scholar 

  15. Hugenroth M, Bohnert M. Come a little bit closer! Lipid droplet-ER contact sites are getting crowded. Biochim Biophys Acta Mol Cell Res. 2020;1867:118603.

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Yang M, Li P, Sit J, Wong A, Rodrigues K, et al. High-fat diet-induced DeSUMOylation of E4BP4 promotes lipid droplet biogenesis and liver steatosis in mice. Diabetes. 2023;72:348–61.

    Article  CAS  PubMed  Google Scholar 

  17. Xin H, Huang R, Zhou M, Chen J, Zhang J, Zhou T, et al. Daytime-restricted feeding enhances running endurance without prior exercise in mice. Nat Metab. 2023;5:1236–51.

    Article  CAS  PubMed  Google Scholar 

  18. Jung HS, Shimizu-Albergine M, Shen X, Kramer F, Shao D, Vivekanandan-Giri A, et al. TNF-alpha induces acyl-CoA synthetase 3 to promote lipid droplet formation in human endothelial cells. J Lipid Res. 2020;61:33–44.

    Article  CAS  PubMed  Google Scholar 

  19. Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab. 2023;5:735–59.

    Article  CAS  PubMed  Google Scholar 

  20. Jackson CL. Lipid droplet biogenesis. Curr Opin Cell Biol. 2019;59:88–96.

    Article  CAS  PubMed  Google Scholar 

  21. Romanauska A, Kohler A. The inner nuclear membrane is a metabolically active territory that generates nuclear lipid droplets. Cell. 2018;174:700–15.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao Y, Tham DKL, Liang FX, Chang J, Wei Y, Sudhir PR, et al. Mitochondrial lipid droplet formation as a detoxification mechanism to sequester and degrade excessive urothelial membranes. Mol Biol Cell. 2019;30:2969–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tirinato L, Pagliari F, Limongi T, Marini M, Falqui A, Seco J, et al. An overview of lipid droplets in cancer and cancer stem cells. Stem Cells Int. 2017;2017:1656053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017;546:162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 2021;17:647–61.

    Article  PubMed  Google Scholar 

  26. Eyme KM, Sammarco A, Jha R, Mnatsakanyan H, Pechdimaljian C, Carvalho L, et al. Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models. Sci Transl Med. 2023;15:eabq6288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henne WM, Reese ML, Goodman JM. The assembly of lipid droplets and their roles in challenged cells. EMBO J. 2019;38:e101816.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Akbar Gharehbagh S, Tolouei Azar J, Razi M. ROS and metabolomics-mediated autophagy in rat’s testicular tissue alter after exercise training; evidence for exercise intensity and outcomes. Life Sci. 2021;277:119585.

    Article  CAS  PubMed  Google Scholar 

  29. Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell. 2019;177:1522–35.e14.

    Article  CAS  PubMed  Google Scholar 

  30. Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21:225–45.

    Article  CAS  PubMed  Google Scholar 

  31. Povero D, Chen Y, Johnson SM, McMahon CE, Pan M, Bao H, et al. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia. J Hepatol. 2023;79:378–93.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng X, Geng F, Pan M, Wu X, Zhong Y, Wang C, et al. Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell Metab. 2020;32:229–42.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell. 2017;42:9–21.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klecker T, Braun RJ, Westermann B. Lipid droplets guard mitochondria during autophagy. Dev Cell. 2017;42:1–2.

    Article  CAS  PubMed  Google Scholar 

  35. Robichaud S, Fairman G, Vijithakumar V, Mak E, Cook DP, Pelletier AR, et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021;17:3671–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petan T, Jarc E, Jusovic M. Lipid droplets in cancer: guardians of fat in a stressful world. Molecules. 2018;23:1941.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Goncalves J, Fresco P. Challenges in pharmacological intervention in perilipins (PLINs) to modulate lipid droplet dynamics in obesity and cancer. Cancers. 2023;15:4013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karagiannis F, Masouleh SK, Wunderling K, Surendar J, Schmitt V, Kazakov A, et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity. 2020;52:620–34.e6.

    Article  CAS  PubMed  Google Scholar 

  39. Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:1260–72.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Jiao Y, Tao Y, Li Z, Yu H, Han S, et al. Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. J Hazard Mater. 2021;412:125243.

    Article  CAS  PubMed  Google Scholar 

  41. Pratelli G, Di Liberto D, Carlisi D, Emanuele S, Giuliano M, Notaro A, et al. Hypertrophy and ER stress induced by palmitate are counteracted by mango peel and seed extracts in 3T3-L1 adipocytes. Int J Mol Sci. 2023;24:5419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng X, Ho QWC, Chua M, Stelmashenko O, Yeo XY, Muralidharan S, et al. Destabilization of beta Cell FIT2 by saturated fatty acids alter lipid droplet numbers and contribute to ER stress and diabetes. Proc Natl Acad Sci USA. 2022;119:e2113074119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chitraju C, Mejhert N, Haas JT, Diaz-Ramirez LG, Grueter CA, Imbriglio JE, et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 2017;26:407–18.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mukhopadhyay S, Schlaepfer IR, Bergman BC, Panda PK, Praharaj PP, Naik PP, et al. ATG14 facilitated lipophagy in cancer cells induce ER stress mediated mitoptosis through a ROS dependent pathway. Free Radic Biol Med. 2017;104:199–213.

    Article  CAS  PubMed  Google Scholar 

  45. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morishita Y, Kellogg AP, Larkin D, Chen W, Vadrevu S, Satin L, et al. Cell death-associated lipid droplet protein CIDE-A is a noncanonical marker of endoplasmic reticulum stress. JCI Insight. 2021;6:e143980.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160:177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mi Y, Qi G, Vitali F, Shang Y, Raikes AC, Wang T, et al. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat Metab. 2023;5:445–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Senos Demarco R, Uyemura BS, D’Alterio C, Jones DL. Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis. Nat Cell Biol. 2019;21:710–20.

    Article  CAS  PubMed  Google Scholar 

  50. Gao L, Zhang C, Zheng Y, Wu D, Chen X, Lan H, et al. Glycine regulates lipid peroxidation promoting porcine oocyte maturation and early embryonic development. J Anim Sci. 2023;101:skac425.

    Article  PubMed  Google Scholar 

  51. Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP, et al. Antioxidant role for lipid droplets in a stem cell niche of drosophila. Cell. 2015;163:340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Welte MA. How brain fat conquers stress. Cell. 2015;163:269–70.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bao X, Ma X, Huang R, Chen J, Xin H, Zhou M, et al. Knockdown of hepatocyte Perilipin-3 mitigates hepatic steatosis and steatohepatitis caused by hepatocyte CGI-58 deletion in mice. J Mol Cell Biol. 2022;14:mjac055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jeremiah SS, Miyakawa K, Ryo A. Detecting SARS-CoV-2 neutralizing immunity: highlighting the potential of split nanoluciferase technology. J Mol Cell Biol. 2022;14:mjac023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 2020;16:e1009127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farley SE, Kyle JE, Leier HC, Bramer LM, Weinstein JB, Bates TA, et al. A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants. Nat Commun. 2022;13:3487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ricciardi S, Guarino AM, Giaquinto L, Polishchuk EV, Santoro M, Di Tullio G, et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature. 2022;606:761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grootemaat AE, van der Niet S, Scholl ER, Roos E, Schurink B, Bugiani M, et al. Lipid and nucleocapsid N-protein accumulation in COVID-19 patient lung and infected cells. Microbiol Spectr. 2022;10:e0127121.

    Article  PubMed  Google Scholar 

  61. Nardacci R, Colavita F, Castilletti C, Lapa D, Matusali G, Meschi S, et al. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis. 2021;12:263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuan S, Yan B, Cao J, Ye ZW, Liang R, Tang K, et al. SARS-CoV-2 exploits host DGAT and ADRP for efficient replication. Cell Discov. 2021;7:100.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tian M, Liu W, Li X, Zhao P, Shereen MA, Zhu C, et al. HIF-1alpha promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct Target Ther. 2021;6:308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell. 2021;56:427–42.e5.

    Article  CAS  PubMed  Google Scholar 

  65. Wang W, Qu Y, Wang X, Xiao MZX, Fu J, Chen L, et al. Genetic variety of ORF3a shapes SARS-CoV-2 fitness through modulation of lipid droplet. J Med Virol. 2023;95:e28630.

    Article  CAS  PubMed  Google Scholar 

  66. Pereira-Dutra FS, Teixeira L, de Souza Costa MF, Bozza PT. Fat, fight, and beyond: the multiple roles of lipid droplets in infections and inflammation. J Leukoc Biol. 2019;106:563–80.

    Article  CAS  PubMed  Google Scholar 

  67. Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid droplet, a key player in host-parasite interactions. Front Immunol. 2018;9:1022.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G, Seco J, et al. ssRNA virus and host lipid rearrangements: is there a role for lipid droplets in SARS-CoV-2 infection? Front Mol Biosci. 2020;7:578964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care. 2021;44:2645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khunti K, Valabhji J, Misra S. Diabetes and the COVID-19 pandemic. Diabetologia. 2023;66:255–66.

    Article  PubMed  Google Scholar 

  71. Acevedo-Sanchez G, Mora-Aguilera G, Coria-Contreras JJ, Alvarez-Maya I. Were metabolic and other chronic diseases the driven onset epidemic forces of COVID-19 in Mexico? Front Public Health. 2023;11:995602.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schelbert S, Schindeldecker M, Drebber U, Witzel HR, Weinmann A, Dries V, et al. Lipid droplet-associated proteins perilipin 1 and 2: molecular markers of steatosis and microvesicular steatotic foci in chronic hepatitis C. Int J Mol Sci. 2022;23:15456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nguyen LP, Tran SC, Suetsugu S, Lim YS, Hwang SB. PACSIN2 interacts with nonstructural protein 5a and regulates hepatitis C virus assembly. J Virol. 2020;94:e01531–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Camus G, Herker E, Modi AA, Haas JT, Ramage HR, Farese RV Jr, et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem. 2013;288:9915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Filipe A, McLauchlan J. Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med. 2015;21:34–42.

    Article  CAS  PubMed  Google Scholar 

  76. Grasselli E, Voci A, Demori I, Vecchione G, Compalati AD, Gallo G, et al. Triglyceride mobilization from lipid droplets sustains the anti-steatotic action of iodothyronines in cultured rat hepatocytes. Front Physiol. 2015;6:418.

    PubMed  Google Scholar 

  77. Choi YM, Ajjaji D, Fleming KD, Borbat PP, Jenkins ML, Moeller BE, et al. Structural insights into perilipin 3 membrane association in response to diacylglycerol accumulation. Nat Commun. 2023;14:3204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giugliano S, Kriss M, Golden-Mason L, Dobrinskikh E, Stone AE, Soto-Gutierrez A, et al. Hepatitis C virus infection induces autocrine interferon signaling by human liver endothelial cells and release of exosomes, which inhibits viral replication. Gastroenterology. 2015;148:392–402.e13.

    Article  CAS  PubMed  Google Scholar 

  79. Saitoh T, Satoh T, Yamamoto N, Uematsu S, Takeuchi O, Kawai T, et al. Antiviral protein viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity. 2011;34:352–63.

    Article  CAS  PubMed  Google Scholar 

  80. Liefhebber JM, Hague CV, Zhang Q, Wakelam MJ, McLauchlan J. Modulation of triglyceride and cholesterol ester synthesis impairs assembly of infectious hepatitis C virus. J Biol Chem. 2014;289:21276–88.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pham HT, Nguyen TTT, Nguyen LP, Han SS, Lim YS, Hwang SB. Hepatitis C virus downregulates ubiquitin-conjugating enzyme E2S expression to prevent proteasomal degradation of NS5A, leading to host cells more sensitive to DNA damage. J Virol. 2019;93:e01240–18.

    Article  PubMed  PubMed Central  Google Scholar 

  82. McRae S, Iqbal J, Sarkar-Dutta M, Lane S, Nagaraj A, Ali N, et al. The hepatitis C virus-induced NLRP3 inflammasome activates the sterol regulatory element-binding protein (SREBP) and regulates lipid metabolism. J Biol Chem. 2016;291:3254–67.

    Article  CAS  PubMed  Google Scholar 

  83. Sun X, Li M, Wang P, Bai Q, Cao X, Mao D. Recent organic photosensitizer designs for evoking proinflammatory regulated cell death in antitumor immunotherapy. Small Methods. 2023;7:e2201614.

    Article  PubMed  Google Scholar 

  84. Wegman AD, Waldran MJ, Bahr LE, Lu JQ, Baxter KE, Thomas SJ, et al. DENV-specific IgA contributes protective and non-pathologic function during antibody-dependent enhancement of DENV infection. PLoS Pathog. 2023;19:e1011616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Randall G. Lipid droplet metabolism during dengue virus infection. Trends Microbiol. 2018;26:640–2.

    Article  CAS  PubMed  Google Scholar 

  86. Lan Y, van Leur SW, Fernando JA, Wong HH, Kampmann M, Siu L, et al. Viral subversion of selective autophagy is critical for biogenesis of virus replication organelles. Nat Commun. 2023;14:2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang J, Lan Y, Li MY, Lamers MM, Fusade-Boyer M, Klemm E, et al. Flaviviruses exploit the lipid droplet protein AUP1 to trigger lipophagy and drive virus production. Cell Host Microbe. 2018;23:819–31.e5.

    Article  CAS  PubMed  Google Scholar 

  88. Tang WC, Lin RJ, Liao CL, Lin YL. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol. 2014;88:6793–804.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Qin ZL, Yao QF, Zhao P, Ren H, Qi ZT. Zika virus infection triggers lipophagy by stimulating the AMPK-ULK1 signaling in human hepatoma cells. Front Cell Infect Microbiol. 2022;12:959029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y, et al. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun. 2023;14:4084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dias SSG, Cunha-Fernandes T, Souza-Moreira L, Soares VC, Lima GB, Azevedo-Quintanilha IG, et al. Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells. J Neuroinflammation. 2023;20:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen Q, Gouilly J, Ferrat YJ, Espino A, Glaziou Q, Cartron G, et al. Metabolic reprogramming by Zika virus provokes inflammation in human placenta. Nat Commun. 2020;11:2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Walpole GFW, Grinstein S, Westman J. The role of lipids in host-pathogen interactions. IUBMB Life. 2018;70:384–92.

    Article  CAS  PubMed  Google Scholar 

  94. Libbing CL, McDevitt AR, Azcueta RP, Ahila A, Mulye M. Lipid droplets: a significant but understudied contributor of host (-) bacterial interactions. Cells. 2019;8:354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wijesundara NM, Lee SF, Davidson R, Cheng Z, Rupasinghe HPV. Carvacrol suppresses inflammatory biomarkers production by lipoteichoic acid- and peptidoglycan-stimulated human tonsil epithelial cells. Nutrients. 2022;14:503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diaz Acosta CC, Dias AA, Rosa T, Batista-Silva LR, Rosa PS, Toledo-Pinto TG, et al. PGL I expression in live bacteria allows activation of a CD206/PPARgamma cross-talk that may contribute to successful Mycobacterium leprae colonization of peripheral nerves. PLoS Pathog. 2018;14:e1007151.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Holert J, Brown K, Hashimi A, Eltis LD, Mohn WW. Steryl ester formation and accumulation in steroid-degrading bacteria. Appl Environ Microbiol. 2020;86:e02353–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang C, Yang L, Ding Y, Wang Y, Lan L, Ma Q, et al. Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun. 2017;8:15979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pu Q, Guo K, Lin P, Wang Z, Qin S, Gao P, et al. Bitter receptor TAS2R138 facilitates lipid droplet degradation in neutrophils during Pseudomonas aeruginosa infection. Signal Transduct Target Ther. 2021;6:210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arcanjo AF, Nunes MP, Silva-Junior EB, Leandro M, da Rocha JDB, Morrot A, et al. B-1 cells modulate the murine macrophage response to Leishmania major infection. World J Biol Chem. 2017;8:151–62.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mendes B, Minori K, Consonni SR, Andrews NW, Miguel DC. Causative agents of american tegumentary leishmaniasis are able to infect 3T3-L1 adipocytes in vitro. Front Cell Infect Microbiol. 2022;12:824494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Castoldi A, Monteiro LB, van Teijlingen Bakker N, Sanin DE, Rana N, Corrado M, et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun. 2020;11:4107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lima JB, Araujo-Santos T, Lazaro-Souza M, Carneiro AB, Ibraim IC, Jesus-Santos FH, et al. Leishmania infantum lipophosphoglycan induced-prostaglandin E2 production in association with PPAR-gamma expression via activation of Toll like receptors-1 and 2. Sci Rep. 2017;7:14321.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Prado M, Eickel N, De Niz M, Heitmann A, Agop-Nersesian C, Wacker R, et al. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms. Autophagy. 2015;11:1561–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cha SJ, Kim MS, Na CH, Jacobs-Lorena M. Plasmodium sporozoite phospholipid scramblase interacts with mammalian carbamoyl-phosphate synthetase 1 to infect hepatocytes. Nat Commun. 2021;12:6773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sheokand PK, Yamaryo-Botte Y, Narwal M, Arnold CS, Thakur V, Islam MM, et al. A plasmodium falciparum lysophospholipase regulates host fatty acid flux via parasite lipid storage to enable controlled asexual schizogony. Cell Rep. 2023;42:112251.

    Article  CAS  PubMed  Google Scholar 

  107. Moreira LM, Meyer W, Chame M, Brandao ML, Vivoni AM, Portugal J, et al. Molecular detection of Histoplasma capsulatum in antarctica. Emerg Infect Dis. 2022;28:2100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zamith-Miranda D, Heyman HM, Burnet MC, Couvillion SP, Zheng X, Munoz N, et al. A Histoplasma capsulatum lipid metabolic map identifies antifungal targets. mBio. 2021;12:e0297221.

    Article  PubMed  Google Scholar 

  109. Sorgi CA, Secatto A, Fontanari C, Turato WM, Belanger C, de Medeiros AI, et al. Histoplasma capsulatum cell wall {beta}-glucan induces lipid body formation through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol. 2009;182:4025–35.

    Article  CAS  PubMed  Google Scholar 

  110. Pereira PAT, Assis PA, Prado MKB, Ramos SG, Aronoff DM, de Paula-Silva FWG, et al. Prostaglandins D2 and E2 have opposite effects on alveolar macrophages infected with Histoplasma capsulatum. J Lipid Res. 2018;59:195–206.

    Article  CAS  PubMed  Google Scholar 

  111. Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, et al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019;11:e10698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KV. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe. 2012;12:669–81.

    Article  CAS  PubMed  Google Scholar 

  113. Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-gamma/HIF-1alpha signaling and supports host defense. PLoS Pathog. 2018;14:e1006874.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Laval T, Chaumont L, Demangel C. Not too fat to fight: the emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev. 2021;301:84–97.

    Article  CAS  PubMed  Google Scholar 

  115. Greenwood DJ, Dos Santos MS, Huang S, Russell MRG, Collinson LM, MacRae JI, et al. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science. 2019;364:1279–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bedard M, van der Niet S, Bernard EM, Babunovic G, Cheng TY, Aylan B, et al. A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest. 2023;133:e161944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kalam H, Chou CH, Kadoki M, Graham DB, Deguine J, Hung DT, et al. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence. Cell Host Microbe. 2023;31:978–92 e5.

    Article  CAS  PubMed  Google Scholar 

  118. Spits H, Mjosberg J. Heterogeneity of type 2 innate lymphoid cells. Nat Rev Immunol. 2022;22:701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells-a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.

    Article  CAS  PubMed  Google Scholar 

  120. Karagiannis F, Masouleh SK, Wunderling K, Surendar J, Schmitt V, Kazakov A, et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity. 2020;52:885.

    Article  CAS  PubMed  Google Scholar 

  121. Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science. 2013;339:156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol. 2014;88:594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020;23:194–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Foley P. Lipids in Alzheimer’s disease: a century-old story. Biochim Biophys Acta. 2010;1801:750–3.

    Article  CAS  PubMed  Google Scholar 

  125. Monson EA, Crosse KM, Duan M, Chen W, O’Shea RD, Wakim LM, et al. Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. Nat Commun. 2021;12:4303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Crosse KM, Monson EA, Dumbrepatil AB, Smith M, Tseng YY, Van der Hoek KH, et al. Viperin binds STING and enhances the type-I interferon response following dsDNA detection. Immunol Cell Biol. 2021;99:373–91.

    Article  CAS  PubMed  Google Scholar 

  127. Sinha KK, Bilokapic S, Du Y, Malik D, Halic M. Histone modifications regulate pioneer transcription factor cooperativity. Nature. 2023;619:378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gruszka DT, Xie S, Kimura H, Yardimci H. Single-molecule imaging reveals control of parental histone recycling by free histones during DNA replication. Sci Adv. 2020;6:eabc0330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stephenson RA, Thomalla JM, Chen L, Kolkhof P, White RP, Beller M, et al. Sequestration to lipid droplets promotes histone availability by preventing turnover of excess histones. Development. 2021;148:dev199381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Islam KU, Anwar S, Patel AA, Mirdad MT, Mirdad MT, Azmi MI, et al. Global lipidome profiling revealed multifaceted role of lipid species in hepatitis C virus replication, assembly, and host antiviral response. Viruses. 2023;15:464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Baek YB, Kwon HJ, Sharif M, Lim J, Lee IC, Ryu YB, et al. Therapeutic strategy targeting host lipolysis limits infection by SARS-CoV-2 and influenza A virus. Signal Transduct Target Ther. 2022;7:367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Schmidt NM, Wing PAC, Diniz MO, Pallett LJ, Swadling L, Harris JM, et al. Targeting human Acyl-CoA: cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint. Nat Commun. 2021;12:2814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vieyres G, Reichert I, Carpentier A, Vondran FWR, Pietschmann T. The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly. PLoS Pathog. 2020;16:e1008554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang J, Gao X, Yuan Y, Sun C, Zhao Y, Xiao L, et al. Perilipin 5 alleviates HCV NS5A-induced lipotoxic injuries in liver. Lipids Health Dis. 2019;18:87.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Clement S, Fauvelle C, Branche E, Kaddai V, Conzelmann S, Boldanova T, et al. Role of seipin in lipid droplet morphology and hepatitis C virus life cycle. J Gen Virol. 2013;94:2208–14.

    Article  CAS  PubMed  Google Scholar 

  136. Yue M, Hu B, Li J, Chen R, Yuan Z, Xiao H, et al. Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production. EMBO J. 2023;42:e112542.

    Article  CAS  PubMed  Google Scholar 

  137. Albert M, Vazquez J, Falcon-Perez JM, Balboa MA, Liesa M, Balsinde J, et al. ISG15 is a novel regulator of lipid metabolism during vaccinia virus infection. Microbiol Spectr. 2022;10:e0389322.

    Article  PubMed  Google Scholar 

  138. Raini SK, Takamatsu Y, Dumre SP, Urata S, Mizukami S, Moi ML, et al. The novel therapeutic target and inhibitory effects of PF-429242 against Zika virus infection. Antivir Res. 2021;192:105121.

    Article  CAS  PubMed  Google Scholar 

  139. Fonnesu R, Thunuguntla V, Veeramachaneni GK, Bondili JS, La Rocca V, Filipponi C, et al. Palmitoylethanolamide (PEA) inhibits SARS-CoV-2 entry by interacting with S protein and ACE-2 receptor. Viruses. 2022;14:1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol. 2015;3:49.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Leier HC, Messer WB, Tafesse FG. Lipids and pathogenic flaviviruses: an intimate union. PLoS Pathog. 2018;14:e1006952.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhang J, Lan Y, Sanyal S. Modulation of lipid droplet metabolism-A potential target for therapeutic intervention in flaviviridae infections. Front Microbiol. 2017;8:2286.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem. 2016;34:1–7.

    Article  CAS  PubMed  Google Scholar 

  144. Antonyak MA, Lukey MJ, Cerione RA. Lipid-filled vesicles modulate macrophages. Science. 2019;363:931–2.

    Article  CAS  PubMed  Google Scholar 

  145. Anand P, Cermelli S, Li Z, Kassan A, Bosch M, Sigua R, et al. A novel role for lipid droplets in the organismal antibacterial response. eLife. 2012;1:e00003.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Nicolaou G, Goodall AH, Erridge C. Diverse bacteria promote macrophage foam cell formation via Toll-like receptor-dependent lipid body biosynthesis. J Atheroscler Thromb. 2012;19:137–48.

    Article  CAS  PubMed  Google Scholar 

  147. Thiam AR, Beller M. The why, when and how of lipid droplet diversity. J Cell Sci. 2017;130:315–24.

    CAS  PubMed  Google Scholar 

  148. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 2013;153:112–25.

    Article  CAS  PubMed  Google Scholar 

  149. Criglar JM, Estes MK, Crawford SE. Rotavirus-induced lipid droplet biogenesis is critical for virus replication. Front Physiol. 2022;13:836870.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Graber K, Khan F, Gluck B, Weigel C, Marzo S, Doshi H, et al. The role of sphingosine-1-phosphate signaling in HSV-1-infected human umbilical vein endothelial cells. Virus Res. 2020;276:197835.

    Article  CAS  PubMed  Google Scholar 

  151. Coulombe F, Jaworska J, Verway M, Tzelepis F, Massoud A, Gillard J, et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity. 2014;40:554–68.

    Article  CAS  PubMed  Google Scholar 

  152. Dai P, Tang Z, Qi M, Liu D, Bajinka O, Tan Y. Dispersion and utilization of lipid droplets mediates respiratory syncytial virus-induced airway hyperresponsiveness. Pediatr Allergy Immunol. 2022;33:e13651.

    Article  CAS  PubMed  Google Scholar 

  153. Hayes MM, Lane BR, King SR, Markovitz DM, Coffey MJ. Prostaglandin E2 inhibits replication of HIV-1 in macrophages through activation of protein kinase A. Cell Immunol. 2002;215:61–71.

    Article  CAS  PubMed  Google Scholar 

  154. Martins AS, Carvalho FA, Faustino AF, Martins IC, Santos NC. West Nile virus capsid protein interacts with biologically relevant host lipid systems. Front Cell Infect Microbiol. 2019;9:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sarkar R, Sharma KB, Kumari A, Asthana S, Kalia M. Japanese encephalitis virus capsid protein interacts with non-lipidated MAP1LC3 on replication membranes and lipid droplets. J Gen Virol. 2021;102:001508.

  156. Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA. 2008;105:4376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. D’Avila H, Melo RC, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC, Bozza PT. Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol. 2006;176:3087–97.

    Article  PubMed  Google Scholar 

  158. Fukuda EY, Lad SP, Mikolon DP, Iacobelli-Martinez M, Li E. Activation of lipid metabolism contributes to interleukin-8 production during Chlamydia trachomatis infection of cervical epithelial cells. Infect Immun. 2005;73:4017–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Walenna NF, Kurihara Y, Chou B, Ishii K, Soejima T, Itoh R, et al. Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate fat mobilization and intracellular growth in murine adipocytes. Biochem Biophys Res Commun. 2018;495:353–9.

    Article  CAS  PubMed  Google Scholar 

  160. de la Fuente J, Ayoubi P, Blouin EF, Almazan C, Naranjo V, Kocan KM. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell Microbiol. 2005;7:549–59.

    Article  PubMed  Google Scholar 

  161. Phillips RM, Six DA, Dennis EA, Ghosh P. In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J Biol Chem. 2003;278:41326–32.

    Article  CAS  PubMed  Google Scholar 

  162. Labaied M, Jayabalasingham B, Bano N, Cha SJ, Sandoval J, Guan G, et al. Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cell Microbiol. 2011;13:569–86.

    Article  CAS  PubMed  Google Scholar 

  163. Nolan SJ, Romano JD, Coppens I. Host lipid droplets: an important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017;13:e1006362.

    Article  PubMed  PubMed Central  Google Scholar 

  164. D’Avila H, Freire-de-Lima CG, Roque NR, Teixeira L, Barja-Fidalgo C, Silva AR, et al. Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E2 generation and increased parasite growth. J Infect Dis. 2011;204:951–61.

    Article  PubMed  Google Scholar 

  165. Pinheiro RO, Nunes MP, Pinheiro CS, D’Avila H, Bozza PT, Takiya CM, et al. Induction of autophagy correlates with increased parasite load of Leishmania amazonensis in BALB/c but not C57BL/6 macrophages. Microbes Infect. 2009;11:181–90.

    Article  CAS  PubMed  Google Scholar 

  166. Gomes AF, Magalhaes KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-γ and PGE2. Parasit Vectors. 2014;7:47.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lecoeur H, Giraud E, Prevost MC, Milon G, Lang T. Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes. PLoS Negl Trop Dis. 2013;7:e2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Araujo-Santos T, Prates DB, Andrade BB, Nascimento DO, Clarencio J, Entringer PF, et al. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E2 production in murine macrophages. PLoS Negl Trop Dis. 2010;4:e873.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Haihe Laboratory of Cell Ecosystem (22HHXBJC00001) and the National Natural Science Foundation of China (32100948).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Yun-fan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Yj., Jin, Y., Zhou, J. et al. Lipid droplets in pathogen infection and host immunity. Acta Pharmacol Sin 45, 449–464 (2024). https://doi.org/10.1038/s41401-023-01189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01189-1

Keywords

This article is cited by

Search

Quick links