[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Innate immune detection of lipid oxidation as a threat assessment strategy

Abstract

Oxidized phospholipids that result from tissue injury operate as immunomodulatory signals that, depending on the context, lead to proinflammatory or anti-inflammatory responses. In this Perspective, we posit that cells of the innate immune system use the presence of oxidized lipids as a generic indicator of threat to the host. Similarly to how pathogen-associated molecular patterns represent general indicators of microbial encounters, oxidized lipids may be the most common molecular feature of an injured tissue. Therefore, microbial detection in the absence of oxidized lipids may indicate encounters with avirulent microorganisms. By contrast, microbial detection and detection of oxidized lipids would indicate encounters with replicating microorganisms, thereby inducing a heightened inflammatory and defensive response. Here we review recent studies supporting this idea. We focus on the biology of oxidized phosphocholines, which have emerged as context-dependent regulators of immunity. We highlight emerging functions of oxidized phosphocholines in dendritic cells and macrophages that drive unique inflammasome and migratory activities and hypermetabolic states. We describe how these lipids hyperactivate dendritic cells to stimulate antitumour CD8+ T cell immunity and discuss the potential implications of the newly described activities of oxidized phosphocholines in host defence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The T cell stimulatory activities of dendritic cells at distinct activation states.
Fig. 2: Mechanism of myeloid cell hyperactivation by oxidized phosphocholines.
Fig. 3: Hyperactive DCs control antitumour T cell immunity.

Similar content being viewed by others

References

  1. Medzhitov, R. & Janeway, C. A. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Vance, R. E. Immunology taught by bacteria. J. Clin. Immunol. 30, 507–511 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miao, E. A. & Warren, S. E. Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome. J. Clin. Immunol. 30, 502–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Franchi, L., Muñoz-Planillo, R. & Núñez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evavold, C. L. & Kagan, J. C. Inflammasomes: threat-assessment organelles of the innate immune system. Immunity 51, 609–624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kieser, K. J. & Kagan, J. C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol. 17, 376–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berliner, J. A. & Watson, A. D. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353, 9–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Leitinger, N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Op. Lipidol. 14, 421–430 (2003).

    Article  CAS  Google Scholar 

  17. Bochkov, V. N. et al. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 12, 1009–1059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Febbraio, M., Hajjar, D. P. & Silverstein, R. L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kar, N. S., Ashraf, M. Z., Valiyaveettil, M. & Podrez, E. A. Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36. J. Biol. Chem. 283, 8765–8771 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boullier, A. et al. Phosphocholine as a pattern recognition ligand for CD36. J. Lipid Res. 46, 969–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Zanoni, I., Tan, Y., di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan, Y., Zanoni, I., Cullen, T. W., Goodman, A. L. & Kagan, J. C. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity 43, 909–922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shirey, K. A. et al. The TLR4 antagonist eritoran protects mice from lethal influenza infection. Nature 497, 498–502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Dingjan, I. et al. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 6, 22064 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ashraf, M. Z. & Srivastava, S. In Lipoproteins: Role in Health and Diseases (ed. Kostner, G.) Ch. 17 (IntechOpen, 2012).

  29. Matt, U., Sharif, O., Martins, R. & Knapp, S. Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell. Mol. Life Sci. 72, 1059–1071 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Bochkov, V. et al. Pleiotropic effects of oxidized phospholipids. Free Radic. Biol. Med. 111, 6–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Knapp, S., Matt, U., Leitinger, N. & van der Poll, T. Oxidized phospholipids inhibit phagocytosis and impair outcome in gram-negative sepsis in vivo. J. Immunol. 178, 993–1001 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Thimmulappa, R. K. et al. Oxidized phospholipids impair pulmonary antibacterial defenses: evidence in mice exposed to cigarette smoke. Biochem. Biophys. Res. Commun. 426, 253–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greenberg, M. E. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhivaki, D. et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep. 33, 108381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Heilig, R. et al. The gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  CAS  Google Scholar 

  42. di Gioia, M. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat. Immunol. 21, 42–53 (2020).

    Article  PubMed  CAS  Google Scholar 

  43. Di Gioia, M. & Zanoni, I. Dooming phagocyte responses: inflammatory effects of endogenous oxidized phospholipids. Front. Endocrinol. https://doi.org/10.3389/fendo.2021.626842 (2021).

    Article  Google Scholar 

  44. Serbulea, V. et al. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol. Metab. 7, 23–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Oskolkova, O. V. et al. Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation. J. Immunol. 185, 7706–7712 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Bochkov, V. N. et al. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419, 77–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Walton, K. A. et al. Specific phospholipid oxidation products inhibit ligand activation of Toll-like receptors 4 and 2. Arterioscler. Thromb. Vasc. Biol. 23, 1197–1203 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Erridge, C., Kennedy, S., Spickett, C. M. & Webb, D. J. Oxidized phospholipid inhibition of Toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J. Biol. Chem. 283, 24748–24759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chu, L. H. et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat. Commun. 9, 996 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bretscher, P. et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol. Med. 7, 593–607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mendel, I. et al. A lecinoxoid, an oxidized phospholipid small molecule, constrains CNS autoimmune disease. J. Neuroimmunol. 226, 126–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Mendel, I., Yacov, N., Shoham, A., Ishai, E. & Breitbart, E. Treatment with oxidized phospholipids directly inhibits nonalcoholic steatohepatitis and liver fibrosis without affecting steatosis. Dig. Dis. Sci. 61, 2545–2553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jain, A., Song, R., Wakeland, E. K. & Pasare, C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nat. Commun. 9, 1–13 (2018).

    Article  CAS  Google Scholar 

  54. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1Β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ernandes, M. J. & Kagan, J. C. Interferon-independent restriction of RNA virus entry and replication by a class of damage-associated molecular patterns. mBio 12, e00584–21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ke, Y. et al. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. FASEB J. 33, 3887–3900 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Slatter, D. A. et al. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight 3, e98459 (2018).

    Article  PubMed Central  Google Scholar 

  62. O’Donnell, V. B., Aldrovandi, N., Murphy, R. C. & Krönke, G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci. Signal. 12, eaau2293 (2019).

    Article  PubMed  CAS  Google Scholar 

  63. Wu, C. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 50, 1401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhivaki, D. & Kagan, J. C. NLRP3 inflammasomes that induce antitumor immunity. Trends Immunol. 42, 575–589 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shimada, T. et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe 7, 38–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hatscher, L. et al. Select hyperactivating NLRP3 ligands enhance the TH1- and TH17-inducing potential of human type 2 conventional dendritic cells. Sci. Signal. 14, eabe1757 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Kagan, J. C. Lipopolysaccharide detection across the kingdoms of life. Trends Immunol. 38, 696–704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gauthier, A. E. et al. Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Sci. Immunol. 6, eabe0531 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bernhard, W. et al. Phosphatidylcholine molecular species in lung surfactant composition in relation to respiratory rate and lung development. Am. J. Resp. Cell Mol. Biol. 25, 725–731 (2001).

    Article  CAS  Google Scholar 

  75. Bergmark, C. et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 49, 2230–2239 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. O’Donnell, V. B., Rossjohn, J. & Wakelam, M. J. O. Phospholipid signaling in innate immune cells. J. Clin. Invest. 128, 2670–2679 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hajeyah, A. A., Griffiths, W. J., Wang, Y., Finch, A. J. & O’Donnell, V. B. The biosynthesis of enzymatically oxidized lipids. Front. Endocrinol. https://doi.org/10.3389/fendo.2020.591819 (2020).

    Article  Google Scholar 

  78. Huber, J. et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler. Thromb. Vasc. Biol. 22, 101–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Watson, A. D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Qin, J., Goswami, R., Balabanov, R. & Dawson, G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J. Neurosci. Res. 85, 977–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kanter, J. L. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12, 138–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Sun, X. et al. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab. 31, 189–206.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Bochkov, V. N. et al. Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circ. Res. 99, 900–908 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Bochkov, V. et al. Novel immune assay for quantification of plasma protective capacity against oxidized phospholipids. Biomark. Med. 10, 797–810 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Gruber, F. et al. Photooxidation generates biologically active phospholipids that induce heme oxygenase-1 in skin cells. J. Biol. Chem. 282, 16934–16941 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolemic mice. Nature 558, 301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ståhle, M. et al. Therapeutic antibody against phosphorylcholine preserves coronary function and attenuates vascular 18F-FDG uptake in atherosclerotic mice. JACC Basic Transl. Sci. 5, 360–373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Joffre, O., Nolte, M. A., Spörri, R. & Reis e Sousa, C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Sallusto, F. & Lanzavecchia, A. The instructive role of dendritic cells on T-cell responses. Arthr. Res. 4, S127–S132 (2002).

    Article  Google Scholar 

  93. Sabado, R. L., Balan, S. & Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res. 27, 74–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Draube, A. et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE 6, e18801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hu, Z., Ott, P. A. & Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ben-Sasson, S. Z. et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl Acad. Sci. USA 106, 7119–7124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ben-Sasson, S. Z. et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J. Exp. Med. 210, 491–502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kagan, J. C., Magupalli, V. G. & Wu, H. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14, 821–826 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mempel, T. R., Henrickson, S. E. & von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Eisenbarth, S. C. et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Kagan laboratory for helpful discussions. This work was supported by US National Institutes of Health grants AI133524, AI093589, AI116550 and P30DK34854 (J.C.K.). D.Z. was funded by the Charles King Trust Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jonathan C. Kagan.

Ethics declarations

Competing interests

J.C.K. holds equity in and consults for IFM Therapeutics and Corner Therapeutics. D.Z. holds equity in and consults for Corner Therapeutics. None of these relationships influenced the manuscript.

Additional information

Peer review information

Nature Reviews Immunology thanks V. Bochkov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhivaki, D., Kagan, J.C. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat Rev Immunol 22, 322–330 (2022). https://doi.org/10.1038/s41577-021-00618-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00618-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing