[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A review of diffusion MRI in mood disorders: mechanisms and predictors of treatment response

Abstract

By measuring the molecular diffusion of water molecules in brain tissue, diffusion MRI (dMRI) provides unique insight into the microstructure and structural connections of the brain in living subjects. Since its inception, the application of dMRI in clinical research has expanded our understanding of the possible biological bases of psychiatric disorders and successful responses to different therapeutic interventions. Here, we review the past decade of diffusion imaging-based investigations with a specific focus on studies examining the mechanisms and predictors of therapeutic response in people with mood disorders. We present a brief overview of the general application of dMRI and key methodological developments in the field that afford increasingly detailed information concerning the macro- and micro-structural properties and connectivity patterns of white matter (WM) pathways and their perturbation over time in patients followed prospectively while undergoing treatment. This is followed by a more in-depth summary of particular studies using dMRI approaches to examine mechanisms and predictors of clinical outcomes in patients with unipolar or bipolar depression receiving pharmacological, neurostimulation, or behavioral treatments. Limitations associated with dMRI research in general and with treatment studies in mood disorders specifically are discussed, as are directions for future research. Despite limitations and the associated discrepancies in findings across individual studies, evolving research strongly indicates that the field is on the precipice of identifying and validating dMRI biomarkers that could lead to more successful personalized treatment approaches and could serve as targets for evaluating the neural effects of novel treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diffusion-based models and methods.
Fig. 2: Summary of study inclusion for review.
Fig. 3: Major white matter tract pathways represented as tractography streamlines.

Similar content being viewed by others

References

  1. Chilla GS, Tan CH, Xu C, Poh CL. Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imaging Med Surg. 2015;5:407–22.

    PubMed  Google Scholar 

  2. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4:469–80.

    PubMed  Google Scholar 

  3. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–55.

    PubMed  Google Scholar 

  4. Tozzi L, Goldstein-Piekarski AN, Korgaonkar MS, Williams LM. Connectivity of the cognitive control network during response inhibition as a predictive and response biomarker in major depression: evidence from a randomized clinical trial. Biol Psychiatry. 2020;87:462–72.

    CAS  PubMed  Google Scholar 

  5. Glasser MF, Smith SM, Marcus DS, Andersson JLR, Auerbach EJ, Behrens TEJ, et al. The Human Connectome Project’s neuroimaging approach. Nat Neurosci. 2016;19:1175–87.

    PubMed  Google Scholar 

  6. Uğurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, et al. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage. 2013;80:80–104.

    PubMed  Google Scholar 

  7. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893–906.

    CAS  PubMed  Google Scholar 

  8. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51:527–39.

    CAS  PubMed  Google Scholar 

  9. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed. 2002;15:456–67.

    PubMed  Google Scholar 

  10. Winklewski PJ, Sabisz A, Naumczyk P, Jodzio K, Szurowska E, Szarmach A. Understanding the physiopathology behind axial and radial diffusivity changes—what do we know? Front Neurol. 2018;9:92.

    PubMed  PubMed Central  Google Scholar 

  11. Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 2000;21:1099–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vos SB, Jones DK, Jeurissen B, Viergever MA, Leemans A. The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. Neuroimage. 2012;59:2208–16.

    PubMed  Google Scholar 

  13. Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23:803–20.

    PubMed  Google Scholar 

  14. Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010;23:836–48.

    PubMed  Google Scholar 

  15. Martinez-Heras E, Grussu F, Prados F, Solana E, Llufriu S. Diffusion-weighted imaging: recent advances and applications. Semin Ultrasound CT MR. 2021;42:490–506.

    PubMed  Google Scholar 

  16. Filatova OG, van Vliet LJ, Schouten AC, Kwakkel G, van der Helm FCT, Vos FM. Comparison of multi-tensor diffusion models’ performance for white matter integrity estimation in chronic stroke. Front Neurosci. 2018;12:247.

    PubMed  PubMed Central  Google Scholar 

  17. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. Diffusion MRI of complex neural architecture. Neuron. 2003;40:885–95.

    CAS  PubMed  Google Scholar 

  18. Tournier J-D, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23:1176–85.

    PubMed  Google Scholar 

  19. Raffelt DA, Smith RE, Ridgway GR, Tournier J-D, Vaughan DN, Rose S, et al. Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55.

    PubMed  Google Scholar 

  20. Albi A, Pasternak O, Minati L, Marizzoni M, Bartrés-Faz D, Bargalló N, et al. Free water elimination improves test-retest reproducibility of diffusion tensor imaging indices in the brain: a longitudinal multisite study of healthy elderly subjects. Hum Brain Mapp. 2017;38:12–26.

    PubMed  Google Scholar 

  21. Bergamino M, Pasternak O, Farmer M, Shenton ME, Hamilton JP. Applying a free-water correction to diffusion imaging data uncovers stress-related neural pathology in depression. Neuroimage Clin. 2016;10:336–42.

    PubMed  Google Scholar 

  22. Assaf Y, Cohen Y. Chapter 7—Inferring Microstructural Information of White Matter from Diffusion MRI. In: Johansen-Berg H, Behrens TEJ, editors. Diffusion MRI. San Diego: Academic Press; 2009. p. 127–46.

  23. Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. Front Phys. 2017;28:61.

  24. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–16.

    PubMed  Google Scholar 

  25. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487–505.

    PubMed  Google Scholar 

  26. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40:570–82.

    PubMed  Google Scholar 

  27. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. 2008;39:336–47.

    PubMed  Google Scholar 

  28. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    CAS  PubMed  Google Scholar 

  29. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    PubMed  Google Scholar 

  30. Jones DK, Simmons A, Williams SC, Horsfield MA. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med. 1999;42:37–41.

    CAS  PubMed  Google Scholar 

  31. Behrens TEJ, Sotiropoulos SN, Jbabdi S Chapter 19—MR diffusion tractography. In: Johansen-Berg H, Behrens TEJ, editors. Diffusion MRI (Second Edition), San Diego: Academic Press; 2014. p. 429–51.

  32. Jeurissen B, Descoteaux M, Mori S, Leemans A. Diffusion MRI fiber tractography of the brain. NMR Biomed. 2019;32:e3785.

    PubMed  Google Scholar 

  33. Jones DK. Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging. 2008;27:1268–74.

    PubMed  Google Scholar 

  34. Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1:e42.

    PubMed  PubMed Central  Google Scholar 

  35. Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, et al. Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. Neuroimage. 2022;249:118870.

    PubMed  Google Scholar 

  36. Bells S, Cercignani M, Deoni S, Assaf Y, Pasternak O. Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts. Proc ISMRM. 2011. 2011.

  37. Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM. Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE. 2012;7:e49790.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schilling KG, Petit L, Rheault F, Remedios S, Pierpaoli C, Anderson AW, et al. Brain connections derived from diffusion MRI tractography can be highly anatomically accurate-if we know where white matter pathways start, where they end, and where they do not go. Brain Struct Funct. 2020;225:2387–402.

    PubMed  PubMed Central  Google Scholar 

  39. Maier-Hein KH, Neher PF, Houde J-C, Côté M-A, Garyfallidis E, Zhong J, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017;8:1349.

    PubMed  PubMed Central  Google Scholar 

  40. Le Bihan D. Diffusion MRI: what water tells us about the brain. EMBO Mol Med. 2014;6:569–73.

    PubMed  PubMed Central  Google Scholar 

  41. Jelescu IO, Fieremans E. Chapter 2—sensitivity and specificity of diffusion MRI to neuroinflammatory processes. In: Laule C, Port JD, editors. Advances in magnetic resonance technology and applications, vol. 9, Academic Press; 2023. p. 31–50.

  42. Knight EL, Engeland CG, Yocum AK, Abu-Mohammad A, Bertram H, Vest E, et al. Heightened inflammation in bipolar disorder occurs independent of symptom severity and is explained by body mass index. Brain Behav Immun Health. 2023;29:100613.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Benedetti F, Aggio V, Pratesi ML, Greco G, Furlan R. Neuroinflammation in bipolar depression. Front Psychiatry. 2020;11:71.

    PubMed  PubMed Central  Google Scholar 

  44. Sayana P, Colpo GD, Simões LR, Giridharan VV, Teixeira AL, Quevedo J, et al. A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. J Psychiatr Res. 2017;92:160–82.

    PubMed  Google Scholar 

  45. Miller AH. Beyond depression: the expanding role of inflammation in psychiatric disorders. World Psychiatry. 2020;19:108–9.

    PubMed  PubMed Central  Google Scholar 

  46. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Majd M, Saunders EFH, Engeland CG. Inflammation and the dimensions of depression: a review. Front Neuroendocrinol. 2020;56:100800.

    PubMed  Google Scholar 

  48. Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry. 2022;27:2689–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller BR, Hen R. The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol. 2015;30:51–58.

    CAS  PubMed  Google Scholar 

  50. Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci. 2018;72:3–12.

    CAS  PubMed  Google Scholar 

  51. Gruber M, Mauritz M, Meinert S, Grotegerd D, de Lange SC, Grumbach P, et al. Cognitive performance and brain structural connectome alterations in major depressive disorder. Psychol Med. 2023;53:1–12.

    PubMed  Google Scholar 

  52. Repple J, Mauritz M, Meinert S, de Lange SC, Grotegerd D, Opel N, et al. Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder. Mol Psychiatry. 2020;25:1550–8.

    PubMed  Google Scholar 

  53. Repple J, Gruber M, Mauritz M, de Lange SC, Winter NR, Opel N, et al. Shared and specific patterns of structural brain connectivity across affective and psychotic disorders. Biol Psychiatry. 2023;93:178–86.

    PubMed  Google Scholar 

  54. Pasternak O, Shenton ME, Westin C-F. Estimation of extracellular volume from regularized multi-shell diffusion MRI. Med Image Comput Comput Assist Inter. 2012;15:305–12.

    Google Scholar 

  55. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br Med J. 2021;372:n71.

    Google Scholar 

  56. van Velzen, Kelly LS, Isaev S, Aleman D, Aftanas LI A, Bauer J, et al. White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry. 2020;25:1511–25.

    PubMed  Google Scholar 

  57. Chen G, Hu X, Li L, Huang X, Lui S, Kuang W, et al. Disorganization of white matter architecture in major depressive disorder: a meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Sci Rep. 2016;6:21825.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M, et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci. 2013;38:49–56.

    PubMed  PubMed Central  Google Scholar 

  59. Zhou L, Wang L, Wang M, Dai G, Xiao Y, Feng Z, et al. Alterations in white matter microarchitecture in adolescents and young adults with major depressive disorder: a voxel-based meta-analysis of diffusion tensor imaging. Psychiatry Res. 2022;323:111482.

    Google Scholar 

  60. Murphy ML, Frodl T. Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biol Mood Anxiety Disord. 2011;1:3.

    PubMed  PubMed Central  Google Scholar 

  61. Xu EP, Nguyen L, Leibenluft E, Stange JP, Linke JO. A meta-analysis on the uncinate fasciculus in depression. Psychol Med. 2023;53:2721–31.

    PubMed  PubMed Central  Google Scholar 

  62. Cattarinussi G, Delvecchio G, Maggioni E, Bressi C, Brambilla P. Ultra-high field imaging in Major Depressive Disorder: a review of structural and functional studies. J Affect Disord. 2021;290:65–73.

    PubMed  Google Scholar 

  63. Korgaonkar MS, Fornito A, Williams LM, Grieve SM. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry. 2014;76:567–74.

    PubMed  Google Scholar 

  64. Yun J-Y, Kim Y-K. Graph theory approach for the structural-functional brain connectome of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110401.

    CAS  PubMed  Google Scholar 

  65. Chen T, Chen Z, Gong Q. White matter-based structural brain network of major depression. Adv Exp Med Biol. 2021;1305:35–55.

    CAS  PubMed  Google Scholar 

  66. Mori S, Wakana S, van Zijl PCM. Nagae-Poetscher LM MRI atlas of human white matter. Elsevier; 2005.

  67. Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, et al. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage. 2022;254:119029.

    PubMed  Google Scholar 

  68. Sheffler ZM, Patel P, Abdijadid S. Antidepressants. StatPearls Publishing; 2023.

  69. Bschor T, Kilarski LL. Are antidepressants effective? A debate on their efficacy for the treatment of major depression in adults. Expert Rev Neurother. 2016;16:367–74.

    CAS  PubMed  Google Scholar 

  70. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.

    PubMed  Google Scholar 

  71. Zheng K-Z, Wang H-N, Liu J, Xi Y-B, Li L, Zhang X, et al. Incapacity to control emotion in major depression may arise from disrupted white matter integrity and OFC-amygdala inhibition. CNS Neurosci Ther. 2018;24:1053–62.

    PubMed  PubMed Central  Google Scholar 

  72. Davis AD, Hassel S, Arnott SR, Harris J, Lam RW, Milev R, et al. White matter indices of medication response in major depression: a diffusion tensor imaging study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:913–24.

    PubMed  Google Scholar 

  73. Seiger R, Gryglewski G, Klöbl M, Kautzky A, Godbersen GM, Rischka L, et al. The influence of acute SSRI administration on white matter microstructure in patients suffering from major depressive disorder and healthy controls. Int J Neuropsychopharmacol. 2021;24:542–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee J-H, Chi S, Ko M, Song M, Ham B-J, Ko Y-H, et al. Prospective study on microstructure in medication-naïve adolescents with first-episode major depressive disorder. J Affect Disord. 2021;293:268–75.

    PubMed  Google Scholar 

  75. Qin J, Liu H, Wei M, Zhao K, Chen J, Zhu J, et al. Reconfiguration of hub-level community structure in depressions: a follow-up study via diffusion tensor imaging. J Affect Disord. 2017;207:305–12.

    PubMed  Google Scholar 

  76. Wang X, Qin J, Zhu J, Bi K, Zhang S, Yan R, et al. Rehabilitative compensatory mechanism of hierarchical subnetworks in major depressive disorder: a longitudinal study across multi-sites. Eur Psychiatry. 2019;58:54–62.

    PubMed  Google Scholar 

  77. Korgaonkar MS, Rekshan W, Gordon E, Rush AJ, Williams LM, Blasey C, et al. Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine. 2015;2:37–45.

    PubMed  Google Scholar 

  78. Korgaonkar MS, Williams LM, Song YJ, Usherwood T, Grieve SM. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br J Psychiatry. 2014;205:321–8.

    PubMed  Google Scholar 

  79. Grieve SM, Korgaonkar MS, Gordon E, Williams LM, Rush AJ. Prediction of nonremission to antidepressant therapy using diffusion tensor imaging. J Clin Psychiatry. 2016;77:e436–e443.

    PubMed  Google Scholar 

  80. Lyon M, Welton T, Varda A, Maller JJ, Broadhouse K, Korgaonkar MS, et al. Gender-specific structural abnormalities in major depressive disorder revealed by fixel-based analysis. Neuroimage Clin. 2019;21:101668.

    PubMed  Google Scholar 

  81. Vieira R, Coelho A, Reis J, Portugal-Nunes C, Magalhães R, Ferreira S, et al. White matter microstructure alterations associated with paroxetine treatment response in major depression. Front Behav Neurosci. 2021;15:693109.

    CAS  PubMed  Google Scholar 

  82. Yuen GS, Gunning FM, Woods E, Klimstra SA, Hoptman MJ, Alexopoulos GS. Neuroanatomical correlates of apathy in late-life depression and antidepressant treatment response. J Affect Disord. 2014;166:179–86.

    PubMed  Google Scholar 

  83. Tatham EL, Hall GBC, Clark D, Foster J, Ramasubbu R. The 5-HTTLPR and BDNF polymorphisms moderate the association between uncinate fasciculus connectivity and antidepressants treatment response in major depression. Eur Arch Psychiatry Clin Neurosci. 2017;267:135–47.

    PubMed  Google Scholar 

  84. Victoria LW, Alexopoulos GS, Ilieva I, Stein AT, Hoptman MJ, Chowdhury N, et al. White matter abnormalities predict residual negative self-referential thinking following treatment of late-life depression with escitalopram: a preliminary study. J Affect Disord. 2019;243:62–9.

    CAS  PubMed  Google Scholar 

  85. Xue L, Shao J, Wang H, Wang X, Zhu R, Yao Z, et al. Shared and unique imaging-derived endo-phenotypes of two typical antidepressant-applicative depressive patients. Eur Radio. 2023;33:645–55.

    CAS  Google Scholar 

  86. Xue L, Pei C, Wang X, Wang H, Tian S, Yao Z, et al. Predicting neuroimaging biomarkers for antidepressant selection in early treatment of depression. J Magn Reson Imaging. 2021;54:551–9.

    PubMed  Google Scholar 

  87. Ma H, Zhang D, Wang Y, Ding Y, Yang J, Li K. Prediction of early improvement of major depressive disorder to antidepressant medication in adolescents with radiomics analysis after ComBat harmonization based on multiscale structural MRI. BMC Psychiatry. 2023;23:466.

    CAS  PubMed  Google Scholar 

  88. Yavi M, Lee H, Henter ID, Park LT, Zarate CA Jr. Ketamine treatment for depression: a review. Discov Ment Health. 2022;2:9.

    PubMed  Google Scholar 

  89. Vasavada MM, Leaver AM, Espinoza RT, Joshi SH, Njau SN, Woods RP, et al. Structural connectivity and response to ketamine therapy in major depression: A preliminary study. J Affect Disord. 2016;190:836–41.

    CAS  PubMed  Google Scholar 

  90. Langhein M, Seitz-Holland J, Lyall AE, Pasternak O, Chunga N, Cetin-Karayumak S, et al. Association between peripheral inflammation and free-water imaging in Major Depressive Disorder before and after ketamine treatment—a pilot study. J Affect Disord. 2022;314:78–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kopelman J, Keller TA, Panny B, Griffo A, Degutis M, Spotts C, et al. Rapid neuroplasticity changes and response to intravenous ketamine: a randomized controlled trial in treatment-resistant depression. Transl Psychiatry. 2023;13:159.

    CAS  PubMed  Google Scholar 

  92. Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, et al. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am J Psychiatry. 2019;176:401–9.

    PubMed  Google Scholar 

  93. Wade BSC, Loureiro J, Sahib A, Kubicki A, Joshi SH, Hellemann G, et al. Anterior default mode network and posterior insular connectivity is predictive of depressive symptom reduction following serial ketamine infusion. Psychol Med. 2022;52:2376–86.

    PubMed  Google Scholar 

  94. Mitchell T, Archer DB, Chu WT, Coombes SA, Lai S, Wilkes BJ, et al. Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism. Hum Brain Mapp. 2019;40:5094–107.

    PubMed  Google Scholar 

  95. Taraku B, Woods RP, Boucher M, Espinoza R, Jog M, Al-Sharif N, et al. Changes in white matter microstructure following serial ketamine infusions in treatment resistant depression. Hum Brain Mapp. 2023. https://doi.org/10.1002/hbm.26217.

  96. Husain MM, Rush AJ, Fink M, Knapp R, Petrides G, Rummans T, et al. Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. J Clin Psychiatry. 2004;65:485–91.

    PubMed  Google Scholar 

  97. UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet. 2003;361:799–808.

    Google Scholar 

  98. Kellner CH, Husain MM, Knapp RG, McCall WV, Petrides G, Rudorfer MV, et al. Right unilateral ultrabrief pulse ECT in geriatric depression: phase 1 of the PRIDE study. Am J Psychiatry. 2016;173:1101–9.

    PubMed  Google Scholar 

  99. Nygren A, Reutfors J, Brandt L, Bodén R, Nordenskjöld A, Tiger M. Response to electroconvulsive therapy in treatment-resistant depression: nationwide observational follow-up study. BJPsych Open. 2023;9:e35.

    PubMed  Google Scholar 

  100. Lyden H, Espinoza RT, Pirnia T, Clark K, Joshi SH, Leaver AM, et al. Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry. 2014;4:e380.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Belge J-B, Mulders PCR, Van Diermen L, Schrijvers D, Sabbe B, Sienaert P, et al. White matter changes following electroconvulsive therapy for depression: a multicenter ComBat harmonization approach. Transl Psychiatry. 2022;12:517.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fortin J-P, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage. 2017;161:149–70.

    PubMed  Google Scholar 

  103. Repple J, Meinert S, Bollettini I, Grotegerd D, Redlich R, Zaremba D, et al. Influence of electroconvulsive therapy on white matter structure in a diffusion tensor imaging study. Psychol Med. 2020;50:849–56.

    PubMed  Google Scholar 

  104. Nickl-Jockschat T, Palomero Gallagher N, Kumar V, Hoffstaedter F, Brügmann E, Habel U, et al. Are morphological changes necessary to mediate the therapeutic effects of electroconvulsive therapy? Eur Arch Psychiatry Clin Neurosci. 2016;266:261–7.

    PubMed  Google Scholar 

  105. van de Mortel LA, Bruin WB, Thomas RM, Abbott C, Argyelan M, van Eijndhoven P, et al. Multimodal multi-center analysis of electroconvulsive therapy effects in depression: Brainwide gray matter increase without functional changes. Brain Stimul. 2022;15:1065–72.

    PubMed  Google Scholar 

  106. Ousdal OT, Argyelan M, Narr KL, Abbott C, Wade B, Vandenbulcke M, et al. Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biol Psychiatry. 2020;87:451–61.

    PubMed  Google Scholar 

  107. McKinnon MC, Yucel K, Nazarov A, MacQueen GM. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci. 2009;34:41–54.

    PubMed  PubMed Central  Google Scholar 

  108. Schmaal L, Veltman DJ, van Erp TGM, Sämann PG, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016;21:806–12.

    CAS  PubMed  Google Scholar 

  109. Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol Psychiatry. 2018;84:574–81.

    PubMed  PubMed Central  Google Scholar 

  110. Takamiya A, Chung JK, Liang K-C, Graff-Guerrero A, Mimura M, Kishimoto T. Effect of electroconvulsive therapy on hippocampal and amygdala volumes: systematic review and meta-analysis. Br J Psychiatry. 2018;212:19–26.

    PubMed  Google Scholar 

  111. Nuninga JO, Mandl RCW, Froeling M, Siero JCW, Somers M, Boks MP, et al. Vasogenic edema versus neuroplasticity as neural correlates of hippocampal volume increase following electroconvulsive therapy. Brain Stimul. 2020;13:1080–6.

    PubMed  Google Scholar 

  112. Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand. 2016;133:154–64.

    CAS  PubMed  Google Scholar 

  113. Yrondi A, Nemmi F, Billoux S, Giron A, Sporer M, Taib S, et al. Significant decrease in hippocampus and amygdala mean diffusivity in treatment-resistant depression patients who respond to electroconvulsive therapy. Front Psychiatry. 2019;10:694.

    PubMed  Google Scholar 

  114. Kubicki A, Leaver AM, Vasavada M, Njau S, Wade B, Joshi SH, et al. Variations in hippocampal white matter diffusivity differentiate response to electroconvulsive therapy in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:300–9.

    PubMed  Google Scholar 

  115. Tsolaki E, Narr KL, Espinoza R, Wade B, Hellemann G, Kubicki A, et al. Subcallosal cingulate structural connectivity differs in responders and nonresponders to electroconvulsive therapy. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:10–19.

    PubMed  Google Scholar 

  116. Peterchev AV, Rosa MA, Deng Z-D, Prudic J, Lisanby SH. Electroconvulsive therapy stimulus parameters: rethinking dosage. J ECT. 2010;26:159–74.

    PubMed  Google Scholar 

  117. Deng Z-D, Argyelan M, Miller J, Quinn DK, Lloyd M, Jones TR, et al. Electroconvulsive therapy, electric field, neuroplasticity, and clinical outcomes. Mol Psychiatry. 2022;27:1676–82.

    CAS  PubMed  Google Scholar 

  118. Andrade C, Bolwig TG. Electroconvulsive therapy, hypertensive surge, blood-brain barrier breach, and amnesia: exploring the evidence for a connection. J ECT. 2014;30:160–4.

    CAS  PubMed  Google Scholar 

  119. Gay F, Romeo B, Martelli C, Benyamina A, Hamdani N. Cytokines changes associated with electroconvulsive therapy in patients with treatment-resistant depression: a Meta-analysis. Psychiatry Res. 2021;297:113735.

    CAS  PubMed  Google Scholar 

  120. Kruse JL, Congdon E, Olmstead R, Njau S, Breen EC, Narr KL, et al. Inflammation and improvement of depression following electroconvulsive therapy in treatment-resistant depression. J Clin Psychiatry. 2018;79:17m11597.

  121. Perera T, George MS, Grammer G, Janicak PG, Pascual-Leone A, Wirecki TS. The clinical TMS society consensus review and treatment recommendations for TMS therapy for major depressive disorder. Brain Stimul. 2016;9:336–46.

    PubMed  PubMed Central  Google Scholar 

  122. Serafini G, Pompili M, Belvederi Murri M, Respino M, Ghio L, Girardi P, et al. The effects of repetitive transcranial magnetic stimulation on cognitive performance in treatment-resistant depression. A systematic review. Neuropsychobiology. 2015;71:125–39.

    PubMed  Google Scholar 

  123. Mitra A, Raichle ME, Geoly AD, Kratter IH, Williams NR. Targeted neurostimulation reverses a spatiotemporal biomarker of treatment-resistant depression. Proc Natl Acad Sci USA. 2023;120:e2218958120.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Cash RFH, Cocchi L, Lv J, Wu Y, Fitzgerald PB, Zalesky A. Personalized connectivity-guided DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility. Hum Brain Mapp. 2021;42:4155–72.

    PubMed  Google Scholar 

  125. Cardenas VA, Bhat JV, Horwege AM, Ehrlich TJ, Lavacot J, Mathalon DH, et al. Anatomical and fMRI-network comparison of multiple DLPFC targeting strategies for repetitive transcranial magnetic stimulation treatment of depression. Brain Stimul. 2022;15:63–72.

    CAS  PubMed  Google Scholar 

  126. Ning L, Rathi Y, Barbour T, Makris N, Camprodon JA. White matter markers and predictors for subject-specific rTMS response in major depressive disorder. J Affect Disord. 2022;299:207–14.

    PubMed  Google Scholar 

  127. Klooster DCW, Vos IN, Caeyenberghs K, Leemans A, David S, Besseling RMH, et al. Indirect frontocingulate structural connectivity predicts clinical response to accelerated rTMS in major depressive disorder. J Psychiatry Neurosci. 2020;45:243–52.

    PubMed  Google Scholar 

  128. Barredo J, Bellone JA, Edwards M, Carpenter LL, Correia S, Philip NS. White matter integrity and functional predictors of response to repetitive transcranial magnetic stimulation for posttraumatic stress disorder and major depression. Depress Anxiety. 2019;36:1047–57.

    PubMed  PubMed Central  Google Scholar 

  129. Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am J Psychiatry. 2020;177:716–26.

    PubMed  Google Scholar 

  130. Phillips AL, Cole EJ, Bentzley BS, Stimpson KH, Nejad R, Tischler C, et al. Stanford accelerated intelligent neuromodulation therapy (SAINT-TRD) induces rapid remission from treatment-resistant depression in a double-blinded, randomized, and controlled trial. Brain Stimul. 2020;13:1859–60.

    Google Scholar 

  131. Tik M, Coetzee JP, Keynan NY, Johnson ND, Geoly AD, Sridhar M, et al. Target engagement in SNT as measured by interleaved TMS-fMRI. Brain Stimul. 2023;16:178–9.

    Google Scholar 

  132. Lee DJ, Lozano CS, Dallapiazza RF, Lozano AM. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg. 2019;131:333–42.

    CAS  PubMed  Google Scholar 

  133. Accolla EA, Pollo C. Mood effects after deep brain stimulation for Parkinson’s disease: an update. Front Neurol. 2019;10:617.

    PubMed  Google Scholar 

  134. Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry. 2018;23:1094–112.

    CAS  PubMed  Google Scholar 

  135. Clark DL, Johnson KA, Butson CR, Lebel C, Gobbi D, Ramasubbu R, et al. Tract-based analysis of target engagement by subcallosal cingulate deep brain stimulation for treatment resistant depression. Brain Stimul. 2020;13:1094–101.

    PubMed  Google Scholar 

  136. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE, Chaturvedi A, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76:963–9.

    PubMed  Google Scholar 

  137. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9.

    CAS  PubMed  Google Scholar 

  138. Howell B, Choi KS, Gunalan K, Rajendra J, Mayberg HS, McIntyre CC. Quantifying the axonal pathways directly stimulated in therapeutic subcallosal cingulate deep brain stimulation. Hum Brain Mapp. 2019;40:889–903.

    PubMed  Google Scholar 

  139. Coenen VA, Schlaepfer TE, Bewernick B, Kilian H, Kaller CP, Urbach H, et al. Frontal white matter architecture predicts efficacy of deep brain stimulation in major depression. Transl Psychiatry. 2019;9:197.

    PubMed  Google Scholar 

  140. Fenoy AJ, Schulz P, Selvaraj S, Burrows C, Spiker D, Cao B, et al. Deep brain stimulation of the medial forebrain bundle: Distinctive responses in resistant depression. J Affect Disord. 2016;203:143–51.

    PubMed  Google Scholar 

  141. Fenoy AJ, Schulz PE, Selvaraj S, Burrows CL, Zunta-Soares G, Durkin K, et al. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression. Transl Psychiatry. 2018;8:111.

    PubMed  Google Scholar 

  142. Elias GJB, Germann J, Boutet A, Beyn ME, Giacobbe P, Song HN, et al. Local neuroanatomical and tract-based proxies of optimal subcallosal cingulate deep brain stimulation. Brain Stimul. 2023;16:1259–72.

    PubMed  Google Scholar 

  143. Coenen VA, Sajonz B, Reisert M, Bostroem J, Bewernick B, Urbach H, et al. Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression. Neuroimage Clin. 2018;20:580–93.

    PubMed  Google Scholar 

  144. Moffa AH, Brunoni AR, Nikolin S, Loo CK. Transcranial direct current stimulation in psychiatric disorders: a comprehensive review. Psychiatr Clin North Am. 2018;41:447–63.

    PubMed  Google Scholar 

  145. Jog MV, Wang DJJ, Narr KL. A review of transcranial direct current stimulation (tDCS) for the individualized treatment of depressive symptoms. Pers Med Psychiatry. 2019;17-18:17–22.

    PubMed  Google Scholar 

  146. Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA, et al. Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med. 2017;376:2523–33.

    CAS  PubMed  Google Scholar 

  147. Zanao TA, Luethi MS, Goerigk S, Suen P, Diaz AP, Soares JC, et al. White matter predicts tDCS antidepressant effects in a sham-controlled clinical trial study. Eur Arch Psychiatry Clin Neurosci. 2023;273:1421–31.

    PubMed  Google Scholar 

  148. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72.

    PubMed  Google Scholar 

  149. McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, et al. Bipolar disorders. Lancet. 2020;396:1841–56.

    CAS  PubMed  Google Scholar 

  150. Mitchell PB, Goodwin GM, Johnson GF, Hirschfeld RMA. Diagnostic guidelines for bipolar depression: a probabilistic approach. Bipolar Disord. 2008;10:144–52.

    PubMed  Google Scholar 

  151. Rolin D, Whelan J, Montano CB. Is it depression or is it bipolar depression? J Am Assoc Nurse Pract. 2020;32:703–13.

    PubMed  Google Scholar 

  152. Rosso G, Maina G, Teobaldi E, Balbo I, Di Salvo G, Montarolo F, et al. Differential diagnosis of unipolar versus bipolar depression by GSK3 levels in peripheral blood: a pilot experimental study. Int J Bipolar Disord. 2023;11:33.

    CAS  PubMed  Google Scholar 

  153. Videtta G, Squarcina L, Rossetti MG, Brambilla P, Delvecchio G, Bellani M. White matter modifications of corpus callosum in bipolar disorder: a DTI tractography review. J Affect Disord. 2023;338:220–7.

    PubMed  Google Scholar 

  154. Favre P, Pauling M, Stout J, Hozer F, Sarrazin S, Abé C, et al. Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals. Neuropsychopharmacology. 2019;44:2285–93.

    CAS  PubMed  Google Scholar 

  155. Xu E, Nguyen L, Hu R, Stavish CM, Leibenluft E, Linke JO. The uncinate fasciculus in individuals with and at risk for bipolar disorder: a meta-analysis. J Affect Disord. 2022;297:208–16.

    PubMed  Google Scholar 

  156. Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, et al. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp. 2022;43:56–82.

    PubMed  Google Scholar 

  157. Grof P. Sixty years of lithium responders. Neuropsychobiology. 2010;62:8–16.

    CAS  PubMed  Google Scholar 

  158. Canales-Rodríguez EJ, Verdolini N, Alonso-Lana S, Torres ML, Panicalli F, Argila-Plaza I, et al. Widespread intra-axonal signal fraction abnormalities in bipolar disorder from multicompartment diffusion MRI: sensitivity to diagnosis, association with clinical features and pharmacologic treatment. Hum Brain Mapp. 2023;44:4605–22.

    PubMed  Google Scholar 

  159. Necus J, Sinha N, Smith FE, Thelwall PE, Flowers CJ, Taylor PN, et al. White matter microstructural properties in bipolar disorder in relationship to the spatial distribution of lithium in the brain. J Affect Disord. 2019;253:224–31.

    CAS  PubMed  Google Scholar 

  160. Abramovic L, Boks MPM, Vreeker A, Verkooijen S, van Bergen AH, Ophoff RA, et al. White matter disruptions in patients with bipolar disorder. Eur Neuropsychopharmacol. 2018;28:743–51.

    CAS  PubMed  Google Scholar 

  161. Sarrazin S, Poupon C, Teillac A, Mangin J-F, Polosan M, Favre P, et al. Higher in vivo cortical intracellular volume fraction associated with lithium therapy in bipolar disorder: a multicenter NODDI study. Psychother Psychosom. 2019;88:171–6.

    PubMed  Google Scholar 

  162. Gildengers AG, Butters MA, Aizenstein HJ, Marron MM, Emanuel J, Anderson SJ, et al. Longer lithium exposure is associated with better white matter integrity in older adults with bipolar disorder. Bipolar Disord. 2015;17:248–56.

    PubMed  Google Scholar 

  163. Furlan R, Melloni E, Finardi A, Vai B, Di Toro S, Aggio V, et al. Natural killer cells protect white matter integrity in bipolar disorder. Brain Behav Immun. 2019;81:410–21.

    CAS  PubMed  Google Scholar 

  164. Benedetti F, Bollettini I, Barberi I, Radaelli D, Poletti S, Locatelli C, et al. Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology. 2013;38:313–27.

    CAS  PubMed  Google Scholar 

  165. Benedetti F, Poletti S, Locatelli C, Mazza E, Lorenzi C, Vitali A, et al. A Homer 1 gene variant influences brain structure and function, lithium effects on white matter, and antidepressant response in bipolar disorder: a multimodal genetic imaging study. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:88–95.

    CAS  PubMed  Google Scholar 

  166. Roberts G, Wen W, Ridgway K, Ho C, Gooch P, Leung V, et al. Hippocampal cingulum white matter increases over time in young people at high genetic risk for bipolar disorder. J Affect Disord. 2022;314:325–32.

    CAS  PubMed  Google Scholar 

  167. Bollettini I, Poletti S, Locatelli C, Vai B, Smeraldi E, Colombo C, et al. Disruption of white matter integrity marks poor antidepressant response in bipolar disorder. J Affect Disord. 2015;174:233–40.

    CAS  PubMed  Google Scholar 

  168. Kafantaris V, Spritzer L, Doshi V, Saito E, Szeszko PR. Changes in white matter microstructure predict lithium response in adolescents with bipolar disorder. Bipolar Disord. 2017;19:587–94.

    CAS  PubMed  Google Scholar 

  169. Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, et al. New advances in the pharmacology and toxicology of lithium: a neurobiologically oriented overview. Pharm Rev. 2024;76:323–57.

    PubMed  Google Scholar 

  170. Machado-Vieira R. Lithium, stress, and resilience in bipolar disorder: deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord. 2018;233:92–99.

    CAS  PubMed  Google Scholar 

  171. Malhi GS, Outhred T. Therapeutic mechanisms of lithium in bipolar disorder: recent advances and current understanding. CNS Drugs. 2016;30:931–49.

    CAS  PubMed  Google Scholar 

  172. Tondo L, Alda M, Bauer M, Bergink V, Grof P, Hajek T, et al. Clinical use of lithium salts: guide for users and prescribers. Int J Bipolar Disord. 2019;7:16.

    PubMed  Google Scholar 

  173. Muneer A. Wnt and GSK3 signaling pathways in bipolar disorder: clinical and therapeutic implications. Clin Psychopharmacol Neurosci. 2017;15:100–14.

    CAS  PubMed  Google Scholar 

  174. Azim K, Butt AM. GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia. 2011;59:540–53.

    PubMed  Google Scholar 

  175. Makoukji J, Belle M, Meffre D, Stassart R, Grenier J, Shackleford G, et al. Lithium enhances remyelination of peripheral nerves. Proc Natl Acad Sci USA. 2012;109:3973–8.

    CAS  PubMed  Google Scholar 

  176. Phatak P, Shaldivin A, King LS, Shapiro P, Regenold WT. Lithium and inositol: effects on brain water homeostasis in the rat. Psychopharmacology. 2006;186:41–47.

    CAS  PubMed  Google Scholar 

  177. Regenold WT. Lithium and increased hippocampal volume—more tissue or more water? Neuropsychopharmacology. 2008;33:1773–4.

    PubMed  Google Scholar 

  178. Melloni EMT, Poletti S, Dallaspezia S, Bollettini I, Vai B, Barbini B, et al. Changes of white matter microstructure after successful treatment of bipolar depression. J Affect Disord. 2020;274:1049–56.

    CAS  PubMed  Google Scholar 

  179. Benedetti F. Antidepressant chronotherapeutics for bipolar depression. Dialog Clin Neurosci. 2012;14:401–11.

    Google Scholar 

  180. Benedetti F, Dallaspezia S, Fulgosi MC, Barbini B, Colombo C, Smeraldi E. Phase advance is an actimetric correlate of antidepressant response to sleep deprivation and light therapy in bipolar depression. Chronobiol Int. 2007;24:921–37.

    CAS  PubMed  Google Scholar 

  181. Parekh PK, McClung CA. Circadian mechanisms underlying reward-related neurophysiology and synaptic plasticity. Front Psychiatry. 2015;6:187.

    PubMed  Google Scholar 

  182. Lan MJ, Rubin-Falcone H, Motiwala F, Chen Y, Stewart JW, Hellerstein DJ, et al. White matter tract integrity is associated with antidepressant response to lurasidone in bipolar depression. Bipolar Disord. 2017;19:444–9.

    CAS  PubMed  Google Scholar 

  183. Paus T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 2010;72:26–35.

    PubMed  Google Scholar 

  184. Johansen-Berg H, Behrens TEJ. Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press; 2013.

  185. Jbabdi S, Sotiropoulos SN, Haber SN, Van Essen DC, Behrens TE. Measuring macroscopic brain connections in vivo. Nat Neurosci. 2015;18:1546–55.

    CAS  PubMed  Google Scholar 

  186. Van Essen DC, Ugurbil K. The future of the human connectome. Neuroimage. 2012;62:1299–310.

    PubMed  Google Scholar 

  187. Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y, et al. Limits to anatomical accuracy of diffusion tractography using modern approaches. Neuroimage. 2019;185:1–11.

    PubMed  Google Scholar 

  188. Sotiropoulos SN, Zalesky A. Building connectomes using diffusion MRI: why, how and but. NMR Biomed. 2019;32:e3752.

    PubMed  Google Scholar 

  189. Fan Q, Eichner C, Afzali M, Mueller L, Tax CMW, Davids M, et al. Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: methodological advances and scientific impact. Neuroimage. 2022;254:118958.

    PubMed  Google Scholar 

  190. Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage. 2013;80:125–43.

    PubMed  Google Scholar 

  191. Mani M, Yang B, Bathla G, Magnotta V, Jacob M. Multi-band- and in-plane-accelerated diffusion MRI enabled by model-based deep learning in q-space and its extension to learning in the spherical harmonic domain. Magn Reson Med. 2022;87:1799–815.

    PubMed  Google Scholar 

  192. Girard G, Whittingstall K, Deriche R, Descoteaux M. Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage. 2014;98:266–78.

    PubMed  Google Scholar 

  193. St-Onge E, Daducci A, Girard G, Descoteaux M. Surface-enhanced tractography (SET). Neuroimage. 2018;169:524–39.

    PubMed  Google Scholar 

  194. Schilling KG, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW. Histological validation of diffusion MRI fiber orientation distributions and dispersion. Neuroimage. 2018;165:200–21.

    PubMed  Google Scholar 

  195. Alemán-Gómez Y, Griffa A, Houde J-C, Najdenovska E, Magon S, Cuadra MB, et al. A multi-scale probabilistic atlas of the human connectome. Sci Data. 2022;9:516.

    PubMed  PubMed Central  Google Scholar 

  196. Bzdok D, Varoquaux G, Steyerberg EW. Prediction, not association, paves the road to precision medicine. JAMA Psychiatry. 2021;78:127–8.

    PubMed  Google Scholar 

  197. Chekroud AM, Bondar J, Delgadillo J, Doherty G, Wasil A, Fokkema M, et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry. 2021;20:154–70.

    PubMed  PubMed Central  Google Scholar 

  198. Rost N, Binder EB, Brückl TM. Predicting treatment outcome in depression: an introduction into current concepts and challenges. Eur Arch Psychiatry Clin Neurosci. 2023;273:113–27.

    PubMed  Google Scholar 

  199. Mori S, Tournier J-D, editors. Chapter 8—Moving beyond DTI: high angular resolution diffusion imaging (HARDI). Introduction to Diffusion Tensor Imaging (Second Edition), San Diego: Academic Press; 2014. p. 65–78.

  200. Fu CHY, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.

    CAS  PubMed  Google Scholar 

  201. Voineskos AN, Mulsant BH, Dickie EW, Neufeld NH, Rothschild AJ, Whyte EM, et al. Effects of antipsychotic medication on brain structure in patients with major depressive disorder and psychotic features: neuroimaging findings in the context of a randomized placebo-controlled clinical trial. JAMA Psychiatry. 2020;77:674–83.

    PubMed  Google Scholar 

  202. Van der A J, De Jager JE, van Dellen E, Mandl RCW, Somers M, Boks MPM, et al. Changes in perfusion, and structure of hippocampal subfields related to cognitive impairment after ECT: A pilot study using ultra high field MRI. J Affect Disord. 2023;325:321–8.

    PubMed  Google Scholar 

  203. Wei Q, Bai T, Brown EC, Xie W, Chen Y, Ji G, et al. Thalamocortical connectivity in electroconvulsive therapy for major depressive disorder. J Affect Disord. 2020;264:163–71.

    PubMed  Google Scholar 

  204. Zeng J, Luo Q, Du L, Liao W, Li Y, Liu H, et al. Reorganization of anatomical connectome following electroconvulsive therapy in major depressive disorder. Neural Plast. 2015;2015:271674.

    PubMed  PubMed Central  Google Scholar 

  205. Accolla EA, Aust S, Merkl A, Schneider G-H, Kühn AA, Bajbouj M, et al. Deep brain stimulation of the posterior gyrus rectus region for treatment resistant depression. J Affect Disord. 2016;194:33–37.

    PubMed  Google Scholar 

  206. Tsolaki E, Espinoza R, Pouratian N. Using probabilistic tractography to target the subcallosal cingulate cortex in patients with treatment resistant depression. Psychiatry Res Neuroimaging. 2017;261:72–74.

    PubMed  Google Scholar 

  207. Microstructure Imaging Group. http://mig.cs.ucl.ac.uk/. Accessed 8 April 2024.

  208. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36:630–44.

    PubMed  Google Scholar 

  209. Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS, Maumet C, et al. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Front Neuroinform. 2015;9:8.

    PubMed  PubMed Central  Google Scholar 

  210. Beaudoin A-M, Rheault F, Theaud G, Laberge F, Whittingstall K, Lamontagne A, et al. Modern technology in multi-shell diffusion MRI reveals diffuse white matter changes in young adults with relapsing-remitting multiple sclerosis. Front Neurosci. 2021;15:665017.

    PubMed  PubMed Central  Google Scholar 

  211. Hansen CB, Yang Q, Lyu I, Rheault F, Kerley C, Chandio BQ, et al. Pandora: 4-D white matter bundle population-based atlases derived from diffusion MRI fiber tractography. Neuroinformatics. 2021;19:447–60.

    PubMed  Google Scholar 

  212. Yeh F-C, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage. 2018;178:57–68.

    PubMed  Google Scholar 

  213. Oberlin LE, Victoria LW, Ilieva I, Dunlop K, Hoptman MJ, Avari J, et al. Comparison of Functional and Structural Neural Network Features in older adults with depression with vs without apathy and association with response to escitalopram: secondary analysis of a nonrandomized clinical trial. JAMA Netw Open. 2022;5:e2224142.

  214. Sun Y, Wang X, Tian S, Chen Z, Wang H, Xue L, et al. An investigation into the association between dopamine receptor D1 multilocus genetic variation, multiparametric magnetic resonance imaging, and antidepressant treatment. J Magn Reson Imaging. 2022;56:282–290.

  215. Bingham KS, Calarco N, Dickie EW, Alexopoulos GS, Butters MA, Meyers BS, et al. The relationship of white matter microstructure with psychomotor disturbance and relapse in remitted psychotic depression. J Affect Disord. 2023;334:317–324.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of the authors of the original research papers included in this review.

Funding

This work was supported by US NIH grants T32 NS048004, T32 GM008243, R01 MH128690, R01 MH132962, and R33 MH110526.

Author information

Authors and Affiliations

Authors

Contributions

All authors (NA-S, AZ-P, and KN) made substantive contributions to this review, including the compilation of research articles and their interpretation. All authors were involved in drafting and editing this work and are accountable for the paper’s content.

Corresponding author

Correspondence to Noor B. Al-Sharif.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sharif, N.B., Zavaliangos-Petropulu, A. & Narr, K.L. A review of diffusion MRI in mood disorders: mechanisms and predictors of treatment response. Neuropsychopharmacol. 50, 211–229 (2024). https://doi.org/10.1038/s41386-024-01894-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-024-01894-3

Search

Quick links