[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers

Abstract

The accumulation of β-sheet–rich amyloid fibrils or aggregates is a complex, multistep process that is associated with cellular toxicity in a number of human protein misfolding disorders, including Parkinson's and Alzheimer's diseases. It involves the formation of various transient and intransient, on- and off-pathway aggregate species, whose structure, size and cellular toxicity are largely unclear. Here we demonstrate redirection of amyloid fibril formation through the action of a small molecule, resulting in off-pathway, highly stable oligomers. The polyphenol (−)-epigallocatechin gallate efficiently inhibits the fibrillogenesis of both α-synuclein and amyloid-β by directly binding to the natively unfolded polypeptides and preventing their conversion into toxic, on-pathway aggregation intermediates. Instead of β-sheet–rich amyloid, the formation of unstructured, nontoxic α-synuclein and amyloid-β oligomers of a new type is promoted, suggesting a generic effect on aggregation pathways in neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGCG inhibits αS fibrillization.
Figure 2: EGCG binds to unfolded αS monomer.
Figure 3: Analysis of EGCG binding to αS with NMR.
Figure 4: EGCG inhibits β-sheet secondary-structure formation of αS.
Figure 5: EGCG-generated αS oligomers do not catalyze amyloid fibrillogenesis and are nontoxic in cell-based assays.
Figure 6: EGCG induces formation of nonamyloid spherical aggregates of Aβ42.
Figure 7: EGCG-stabilized Aβ42 aggregates are seeding incompetent and nontoxic structures.
Figure 8: Working models of effects of EGCG on αS fibrillogenesis.

Similar content being viewed by others

References

  1. Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  2. Rochet, J.C. & Lansbury, P.T., Jr. Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10, 60–68 (2000).

    Article  CAS  Google Scholar 

  3. Taylor, J.P., Hardy, J. & Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  Google Scholar 

  4. Sacchettini, J.C. & Kelly, J.W. Therapeutic strategies for human amyloid diseases. Nat. Rev. Drug Discov. 1, 267–275 (2002).

    Article  CAS  Google Scholar 

  5. Fowler, D.M., Koulov, A.V., Balch, W.E. & Kelly, J.W. Functional amyloid—from bacteria to humans. Trends Biochem. Sci. 32, 217–224 (2007).

    Article  CAS  Google Scholar 

  6. Lansbury, P.T. & Lashuel, H.A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).

    Article  CAS  Google Scholar 

  7. Frieden, C. Actin and tubulin polymerization: the use of kinetic methods to determine mechanism. Annu. Rev. Biophys. Biophys. Chem. 14, 189–210 (1985).

    Article  CAS  Google Scholar 

  8. Collins, S.R., Douglass, A., Vale, R.D. & Weissman, J.S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004).

    Article  Google Scholar 

  9. Lomakin, A., Teplow, D.B., Kirschner, D.A. & Benedek, G.B. Kinetic theory of fibrillogenesis of amyloid β-protein. Proc. Natl. Acad. Sci. USA 94, 7942–7947 (1997).

    Article  CAS  Google Scholar 

  10. Muchowski, P.J. & Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11–22 (2005).

    Article  CAS  Google Scholar 

  11. Gosal, W.S. et al. Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. J. Mol. Biol. 351, 850–864 (2005).

    Article  CAS  Google Scholar 

  12. Cerda-Costa, N., Esteras-Chopo, A., Aviles, F.X., Serrano, L. & Villegas, V. Early kinetics of amyloid fibril formation reveals conformational reorganisation of initial aggregates. J. Mol. Biol. 366, 1351–1363 (2007).

    Article  CAS  Google Scholar 

  13. Rousseau, F., Schymkowitz, J. & Serrano, L. Protein aggregation and amyloidosis: confusion of the kinds? Curr. Opin. Struct. Biol. 16, 118–126 (2006).

    Article  CAS  Google Scholar 

  14. Yang, D.S., Yip, C.M., Huang, T.H., Chakrabartty, A. & Fraser, P.E. Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. Biol. Chem. 274, 32970–32974 (1999).

    Article  CAS  Google Scholar 

  15. Serpell, L.C., Berriman, J., Jakes, R., Goedert, M. & Crowther, R.A. Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc. Natl. Acad. Sci. USA 97, 4897–4902 (2000).

    Article  CAS  Google Scholar 

  16. Pellarin, R. & Caflisch, A. Interpreting the aggregation kinetics of amyloid peptides. J. Mol. Biol. 360, 882–892 (2006).

    Article  CAS  Google Scholar 

  17. Cohen, F.E. & Kelly, J.W. Therapeutic approaches to protein-misfolding diseases. Nature 426, 905–909 (2003).

    Article  CAS  Google Scholar 

  18. Shorter, J. & Lindquist, S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol. Cell 23, 425–438 (2006).

    Article  CAS  Google Scholar 

  19. Muchowski, P.J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97, 7841–7846 (2000).

    Article  CAS  Google Scholar 

  20. Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23, 887–897 (2006).

    Article  CAS  Google Scholar 

  21. Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8, 1155–1162 (2006).

    Article  CAS  Google Scholar 

  22. Kitamura, A. et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8, 1163–1170 (2006).

    Article  CAS  Google Scholar 

  23. Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T., Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294, 1346–1349 (2001).

    Article  CAS  Google Scholar 

  24. Williams, A.D. et al. Structural properties of Aβ protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA 102, 7115–7120 (2005).

    Article  CAS  Google Scholar 

  25. Necula, M. et al. Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry 46, 8850–8860 (2007).

    Article  CAS  Google Scholar 

  26. Ehrnhoefer, D.E. et al. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet. 15, 2743–2751 (2006).

    Article  CAS  Google Scholar 

  27. Masuda, M. et al. Small molecule inhibitors of α-synuclein filament assembly. Biochemistry 45, 6085–6094 (2006).

    Article  CAS  Google Scholar 

  28. LeVine, H., III. Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284 (1999).

    Article  CAS  Google Scholar 

  29. Wood, S.J. et al. α-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. J. Biol. Chem. 274, 19509–19512 (1999).

    Article  CAS  Google Scholar 

  30. Bosco, D.A. et al. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate α-synuclein fibrilization. Nat. Chem. Biol. 2, 249–253 (2006).

    Article  CAS  Google Scholar 

  31. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. & Lansbury, P.T., Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    Article  CAS  Google Scholar 

  32. Paz, M.A., Fluckiger, R., Boak, A., Kagan, H.M. & Gallop, P.M. Specific detection of quinoproteins by redox-cycling staining. J. Biol. Chem. 266, 689–692 (1991).

    CAS  PubMed  Google Scholar 

  33. Craik, D.J. & Wilce, J.A. Studies of protein-ligand interactions by NMR. Methods Mol. Biol. 60, 195–232 (1997).

    CAS  PubMed  Google Scholar 

  34. Bertoncini, C.W., Fernandez, C.O., Griesinger, C., Jovin, T.M. & Zweckstetter, M. Familial mutants of α-synuclein with increased neurotoxicity have a destabilized conformation. J. Biol. Chem. 280, 30649–30652 (2005).

    Article  CAS  Google Scholar 

  35. Harper, J.D. & Lansbury, P.T. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    Article  CAS  Google Scholar 

  36. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  Google Scholar 

  37. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  Google Scholar 

  38. El-Agnaf, O.M. et al. Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett. 440, 71–75 (1998).

    Article  CAS  Google Scholar 

  39. Goedert, M. & Spillantini, M.G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  Google Scholar 

  40. Bieschke, J., Zhang, Q., Powers, E.T., Lerner, R.A. & Kelly, J.W. Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry 44, 4977–4983 (2005).

    Article  CAS  Google Scholar 

  41. Walsh, D.M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952 (1999).

    Article  CAS  Google Scholar 

  42. Bennett, M.C. The role of α-synuclein in neurodegenerative diseases. Pharmacol. Ther. 105, 311–331 (2005).

    Article  CAS  Google Scholar 

  43. Moore, D.J., West, A.B., Dawson, V.L. & Dawson, T.M. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57–87 (2005).

    Article  CAS  Google Scholar 

  44. Iwai, A. et al. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475 (1995).

    Article  CAS  Google Scholar 

  45. Fernandez, C.O. et al. NMR of α-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J. 23, 2039–2046 (2004).

    Article  CAS  Google Scholar 

  46. Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37 (2006).

    Article  CAS  Google Scholar 

  47. Del Mar, C., Greenbaum, E.A., Mayne, L., Englander, S.W. & Woods, V.L., Jr. Structure and properties of α-synuclein and other amyloids determined at the amino acid level. Proc. Natl. Acad. Sci. USA 102, 15477–15482 (2005).

    Article  CAS  Google Scholar 

  48. Bieschke, J., Siegel, S.J., Fu, Y. & Kelly, J.W. Alzheimer's Aβ peptides containing an isostructural backbone mutation afford distinct aggregate morphologies but analogous cytotoxicity. Evidence for a common low-abundance toxic structure(s)? Biochemistry 47, 50–59 (2008).

    Article  CAS  Google Scholar 

  49. Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

    Article  CAS  Google Scholar 

  50. Mandel, S.A. et al. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14, 46–60 (2005).

    Article  CAS  Google Scholar 

  51. Khan, N., Afaq, F., Saleem, M., Ahmad, N. & Mukhtar, H. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res. 66, 2500–2505 (2006).

    Article  CAS  Google Scholar 

  52. Kocisko, D.A. et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol. 77, 10288–10294 (2003).

    Article  CAS  Google Scholar 

  53. Zhu, N. et al. Identification of oxidation products of (−)-epigallocatechin gallate and (−)-epigallocatechin with H2O2 . J. Agric. Food Chem. 48, 979–981 (2000).

    Article  CAS  Google Scholar 

  54. Dedmon, M.M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M. & Dobson, C.M. Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem. Soc. 127, 476–477 (2005).

    Article  CAS  Google Scholar 

  55. Eliezer, D., Kutluay, E., Bussell, R. Jr. & Browne, G. Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol. 307, 1061–1073 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Rautenberg, G. Grelle, S. Kostka, S. Plassmann and N. Schugardt for technical assistance, E. Müller and A. Otto for MS, J. Russ for kinetic experiments, S. Engelender for providing αS cDNA, S. Schnoegl for critical reading of the manuscript and editorial support, C. Haenig for computer support, and the department of M. Bienert, Leibnitz-Institute for Molecular Pharmacology, for the use of their CD spectrometer. A.P. and L.M. thank J. Christodoulou for the α-synuclein plasmid and for the spectral assignment in an electronic form. The project was funded by the NGFN2 program of the German Federal Ministry of Education and Research (BMBF, to E.E.W.), APOPIS (to E.E.W. and M.H.) and Deutsche Forschungsgemeinschaft (to D.E.E., E.E.W., A.B., M.H. and S.E.).

Author information

Authors and Affiliations

Authors

Contributions

D.E.E. performed αS and Aβ experiments and edited the manuscript; J.B. performed αS and Aβ experiments and edited the manuscript; A.B. and M.H. performed Aβ experiments; L.M. performed NMR experiments; R.L. performed EM experiments; S.E. and A.P. edited the manuscript; E.E.W. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Erich E Wanker.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 7646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrnhoefer, D., Bieschke, J., Boeddrich, A. et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15, 558–566 (2008). https://doi.org/10.1038/nsmb.1437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing