[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphatases: providing safe passage through mitotic exit

Key Points

  • Mitotic exit comprises all the mitotic stages after 'satisfaction' of the spindle assembly checkpoint, including chromosome segregation, cytokinesis and reassembly of interphase cell structures.

  • Mitotic exit is largely driven by inactivation of mitotic kinases, as well as by activation of counteracting mitotic exit phosphatases, which leads to a net dephosphorylation of a large range of substrates.

  • The key mitotic exit phosphatase in budding yeast is Cdc14, which is regulated by two regulatory networks: Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN).

  • Animal cell mitotic exit depends on protein phosphatases PP1 and PP2A, and the key function of Cdc14 does not seem to be conserved in species other than budding yeast.

  • A regulatory network involving Greatwall kinase and its substrates, the PP2A-inhibitors α-endosulphine (ENSA) and cyclic AMP-regulated phosphoprotein 19 (ARPP19), establishes a mutual inhibition between cyclin-dependent kinase 1 (CDK1) and PP2A.

  • Mitotic exit phosphatases are attractive candidate targets for the development of future cancer therapeutics.

Abstract

The mitosis-to-interphase transition involves dramatic cellular reorganization from a state that supports chromosome segregation to a state that complies with all functions of an interphase cell. This process, termed mitotic exit, depends on the removal of mitotic phosphorylations from a broad range of substrates. Mitotic exit regulation involves inactivation of mitotic kinases and activation of counteracting protein phosphatases. The key mitotic exit phosphatase in budding yeast, Cdc14, is now well understood. By contrast, in animal cells, it is now emerging that mitotic exit relies on distinct regulatory networks, including the protein phosphatases PP1 and PP2A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular reorganization during mitotic progression and the activity of important mitotic kinases and phosphatases.
Figure 2: Regulation of Cdc14 activity during mitotic exit in budding yeast.
Figure 3: Model for regulatory networks of PP2A and PP1 during vertebrate mitotic exit.
Figure 4: Spatial control of phosphorylation patterns by phosphatases counteracting Aurora B and PLK1.

Similar content being viewed by others

References

  1. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Guttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nature Rev. Mol. Cell Biol. 10, 178–191 (2009).

    Article  CAS  Google Scholar 

  3. Belmont, A. S. Mitotic chromosome structure and condensation. Curr. Opin. Cell Biol. 18, 632–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Walczak, C. E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nature Rev. Mol. Cell Biol. 11, 91–102 (2010).

    Article  CAS  Google Scholar 

  5. Lu, L., Ladinsky, M. S. & Kirchhausen, T. Cisternal organization of the endoplasmic reticulum during mitosis. Mol. Biol. Cell 20, 3471–3480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaal, K. J. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Holt, L. J. et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malik, R. et al. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J. Proteome Res. 8, 4553–4563 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Nousiainen, M., Sillje, H. H., Sauer, G., Nigg, E. A. & Korner, R. Phosphoproteome analysis of the human mitotic spindle. Proc. Natl Acad. Sci. USA 103, 5391–5396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal 3, ra3 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Santamaria, A. et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol. Cell. Proteomics 10, M110.004457 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  Google Scholar 

  14. Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nature Rev. Mol. Cell Biol. 12, 427–438 (2011).

    Article  CAS  Google Scholar 

  15. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  16. Sullivan, M. & Morgan, D. O. Finishing mitosis, one step at a time. Nature Rev. Mol. Cell Biol. 8, 894–903 (2007).

    Article  CAS  Google Scholar 

  17. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Stewart, S. & Fang, G. Destruction box-dependent degradation of Aurora B is mediated by the anaphase-promoting complex/cyclosome and Cdh1. Cancer Res. 65, 8730–8735 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Floyd, S., Pines, J. & Lindon, C. APC/C Cdh1 targets Aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr. Biol. 18, 1649–1658 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Bollen, M., Gerlich, D. W. & Lesage, B. Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol. 19, 531–541 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. De Wulf, P., Montani, F. & Visintin, R. Protein phosphatases take the mitotic stage. Curr. Opin. Cell Biol. 21, 806–815 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Queralt, E. & Uhlmann, F. Cdk-counteracting phosphatases unlock mitotic exit. Curr. Opin. Cell Biol. 20, 661–668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trinkle-Mulcahy, L. & Lamond, A. I. Mitotic phosphatases: no longer silent partners. Curr. Opin. Cell Biol. 18, 623–631 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Peter, M., Sanghera, J. S., Pelech, S. L. & Nigg, E. A. Mitogen-activated protein kinases phosphorylate nuclear lamins and display sequence specificity overlapping that of mitotic protein kinase p34cdc2. Eur. J. Biochem. 205, 287–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Peter, M., Nakagawa, J., Doree, M., Labbe, J. C. & Nigg, E. A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by Cdc2 kinase. Cell 61, 591–602 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Heald, R. & McKeon, F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579–589 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Laurell, E. et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144, 539–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Thompson, L. J., Bollen, M. & Fields, A. P. Identification of protein phosphatase 1 as a mitotic lamin phosphatase. J. Biol. Chem. 272, 29693–29697 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Steen, R. L., Martins, S. B., Tasken, K. & Collas, P. Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J. Cell Biol. 150, 1251–1262 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmitz, M. H. et al. Live-cell imaging RNAi screen identifies PP2A-B55α and importin-β1 as key mitotic exit regulators in human cells. Nature Cell Biol. 12, 886–893 (2010). The first comprehensive RNAi screen for human mitotic exit phosphatases, which identifies a role for PP2A–B55α.

    Article  CAS  PubMed  Google Scholar 

  33. Landsverk, H. B., Kirkhus, M., Bollen, M., Kuntziger, T. & Collas, P. PNUTS enhances in vitro chromosome decondensation in a PP1-dependent manner. Biochem. J. 390, 709–717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vagnarelli, P. et al. Condensin and Repo-Man–PP1 co-operate in the regulation of chromosome architecture during mitosis. Nature Cell Biol. 8, 1133–1142 (2006). Shows that chromosome decondensation at mitotic exit depends on Repo-Man–PP1.

    Article  CAS  PubMed  Google Scholar 

  35. Trinkle-Mulcahy, L. et al. Repo-Man recruits PP1γ to chromatin and is essential for cell viability. J. Cell Biol. 172, 679–692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qian, J., Lesage, B., Beullens, M., Van Eynde, A. & Bollen, M. PP1/Repo-Man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal Aurora B targeting. Curr. Biol. 21, 766–773 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Wei, J. H. & Seemann, J. Mitotic division of the mammalian Golgi apparatus. Semin. Cell Dev. Biol. 20, 810–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lowe, M., Gonatas, N. K. & Warren, G. The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130. J. Cell Biol. 149, 341–356 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishima, M., Pavicic, V., Gruneberg, U., Nigg, E. A. & Glotzer, M. Cell cycle regulation of central spindle assembly. Nature 430, 908–913 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Neef, R. et al. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biol. 9, 436–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, C., Lau, E., Schwarzenbacher, R., Bossy-Wetzel, E. & Jiang, W. Spatiotemporal control of spindle midzone formation by PRC1 in human cells. Proc. Natl Acad. Sci. USA 103, 6196–6201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hummer, S. & Mayer, T. U. Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr. Biol. 19, 607–612 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Pereira, G. & Schiebel, E. Separase regulates INCENP–Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Mirchenko, L. & Uhlmann, F. Sli15INCENP dephosphorylation prevents mitotic checkpoint reengagement due to loss of tension at anaphase onset. Curr. Biol. 20, 1396–1401 (2010). Demonstrates that dephosphorylation of the chromosomal passenger complex by Cdc14 is required to prevent spindle assembly checkpoint re-engagement during anaphase in budding yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, T. H., Turck, C. & Kirschner, M. W. Inhibition of cdc2 activation by INH/PP2A. Mol. Biol. Cell 5, 323–338 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clarke, P. R., Hoffmann, I., Draetta, G. & Karsenti, E. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Mol. Biol. Cell 4, 397–411 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumagai, A. & Dunphy, W. G. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70, 139–151 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998). Shows that budding yeast Cdc14 counteracts Cdk1 and is thus indispensable for mitotic exit.

    Article  CAS  PubMed  Google Scholar 

  49. Wan, J., Xu, H. & Grunstein, M. Cdc14 of Saccharomyces cerevisiae. Cloning, sequence analysis, and transcription during the cell cycle. J. Biol. Chem. 267, 11274–11280 (1992).

    CAS  PubMed  Google Scholar 

  50. Stegmeier, F. & Amon, A. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38, 203–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Morgan, D. O. The Cell Cycle: Principles of Control. (New Science Press, London, 2007).

    Google Scholar 

  52. Peng, C. Y. et al. C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ. 9, 197–208 (1998).

    CAS  PubMed  Google Scholar 

  53. Kumagai, A., Yakowec, P. S. & Dunphy, W. G. 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol. Biol. Cell 9, 345–354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Margolis, S. S. et al. Role for the PP2A/B56δ phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127, 759–773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Margolis, S. S. et al. A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25. Mol. Biol. Cell 17, 1779–1789 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Margolis, S. S. et al. PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. EMBO J. 22, 5734–5745 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lindqvist, A., Rodriguez-Bravo, V. & Medema, R. H. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell Biol. 185, 193–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Potapova, T. A., Sivakumar, S., Flynn, J. N., Li, R. & Gorbsky, G. J. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol. Biol. Cell 22, 1191–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Surana, U. et al. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12, 1969–1978 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yeong, F. M., Lim, H. H., Padmashree, C. G. & Surana, U. Exit from mitosis in budding yeast: biphasic inactivation of the Cdc28-Clb2 mitotic kinase and the role of Cdc20. Mol. Cell 5, 501–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Berdougo, E., Nachury, M. V., Jackson, P. K. & Jallepalli, P. V. The nucleolar phosphatase Cdc14B is dispensable for chromosome segregation and mitotic exit in human cells. Cell Cycle 7, 1184–1890 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Cueille, N. et al. Flp1, a fission yeast orthologue of the S. cerevisiae CDC14 gene, is not required for cyclin degradation or rum1p stabilisation at the end of mitosis. J. Cell Sci. 114, 2649–2664 (2001).

    CAS  PubMed  Google Scholar 

  64. Gruneberg, U., Glotzer, M., Gartner, A. & Nigg, E. A. The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. J. Cell Biol. 158, 901–914 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mailand, N. et al. Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nature Cell Biol. 4, 317–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Mocciaro, A. et al. Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. J. Cell Biol. 189, 631–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mocciaro, A. & Schiebel, E. Cdc14: a highly conserved family of phosphatases with non-conserved functions? J. Cell Sci. 123, 2867–2876 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Saito, R. M., Perreault, A., Peach, B., Satterlee, J. S. & van den Heuvel, S. The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans. Nature Cell Biol. 6, 777–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Trautmann, S. et al. Fission yeast Clp1p phosphatase regulates G2/M transition and coordination of cytokinesis with cell cycle progression. Curr. Biol. 11, 931–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Kaiser, B. K., Zimmerman, Z. A., Charbonneau, H. & Jackson, P. K. Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol. Biol. Cell 13, 2289–2300 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Khmelinskii, A., Lawrence, C., Roostalu, J. & Schiebel, E. Cdc14-regulated midzone assembly controls anaphase B. J. Cell Biol. 177, 981–993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Azzam, R. et al. Phosphorylation by cyclin B–Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus. Science 305, 516–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Pereira, G., Manson, C., Grindlay, J. & Schiebel, E. Regulation of the Bfa1p–Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p. J. Cell Biol. 157, 367–379 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Queralt, E., Lehane, C., Novak, B. & Uhlmann, F. Downregulation of PP2ACdc55 phosphatase by separase initiates mitotic exit in budding yeast. Cell 125, 719–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Sullivan, M. & Uhlmann, F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nature Cell Biol. 5, 249–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Yoshida, S., Asakawa, K. & Toh-e, A. Mitotic exit network controls the localization of Cdc14 to the spindle pole body in Saccharomyces cerevisiae. Curr. Biol. 12, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Y. & Ng, T. Y. Phosphatase 2A negatively regulates mitotic exit in Saccharomyces cerevisiae. Mol. Biol. Cell 17, 80–89 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Higuchi, T. & Uhlmann, F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433, 171–176 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Woodbury, E. L. & Morgan, D. O. Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nature Cell Biol. 9, 106–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117, 471–482 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. D'Amours, D., Stegmeier, F. & Amon, A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117, 455–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Manzoni, R. et al. Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit. J. Cell Biol. 190, 209–222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burke, D. J. Interpreting spatial information and regulating mitosis in response to spindle orientation. Genes Dev. 23, 1613–1618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Caydasi, A. K., Ibrahim, B. & Pereira, G. Monitoring spindle orientation: spindle position checkpoint in charge. Cell Div. 5, 28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mohl, D. A., Huddleston, M. J., Collingwood, T. S., Annan, R. S. & Deshaies, R. J. Dbf2–Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. J. Cell Biol. 184, 527–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu, Y. & Cross, F. Mitotic exit in the absence of separase activity. Mol. Biol. Cell 20, 1576–1591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, L., Ernsting, B. R., Wishart, M. J., Lohse, D. L. & Dixon, J. E. A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast. J. Biol. Chem. 272, 29403–29406 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Bembenek, J. & Yu, H. Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a. J. Biol. Chem. 276, 48237–48242 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. van Leuken, R. et al. Polo-like kinase-1 controls Aurora A destruction by activating APC/C-Cdh1. PLoS ONE 4, e5282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bassermann, F. et al. The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 134, 256–267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, J. et al. Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication. J. Cell Biol. 181, 475–483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Moorhead, G. B., Trinkle-Mulcahy, L. & Ulke-Lemee, A. Emerging roles of nuclear protein phosphatases. Nature Rev. Mol. Cell Biol. 8, 234–244 (2007).

    Article  CAS  Google Scholar 

  97. Janssens, V., Longin, S. & Goris, J. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem. Sci. 33, 113–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Virshup, D. M. & Shenolikar, S. From promiscuity to precision: protein phosphatases get a makeover. Mol. Cell 33, 537–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Agostinis, P., Derua, R., Sarno, S., Goris, J. & Merlevede, W. Specificity of the polycation-stimulated (type-2A) and ATP, Mg-dependent (type-1) protein phosphatases toward substrates phosphorylated by p34cdc2 kinase. Eur. J. Biochem. 205, 241–248 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Ferrigno, P., Langan, T. A. & Cohen, P. Protein phosphatase 2A1 is the major enzyme in vertebrate cell extracts that dephosphorylates several physiological substrates for cyclin-dependent protein kinases. Mol. Biol. Cell 4, 669–677 (1993). An in vitro study of phosphatases that identifies PP2A as a CDK1-counteracting phosphatase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mayer-Jaekel, R. E. et al. Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. J. Cell Sci. 107 (Pt 9), 2609–2616 (1994). Characterizes the D. melanogaster PP2A–B55 mutant, and provides the first link between CDK1 substrate dephosphorylation and PP2A–B55 in vivo.

    CAS  PubMed  Google Scholar 

  102. Mayer-Jaekel, R. E. et al. The 55 kD regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell 72, 621–633 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Mochida, S., Ikeo, S., Gannon, J. & Hunt, T. Regulated activity of PP2A-B55δ is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J. 28, 2777–2785 (2009). Identifies PP2A–B55 as a pivotal mitotic exit phosphatase in X. laevis egg extracts, and shows that it promotes cdk1 substrate dephosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Castilho, P. V., Williams, B. C., Mochida, S., Zhao, Y. & Goldberg, M. L. The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55δ, a phosphatase directed against CDK phosphosites. Mol. Biol. Cell 20, 4777–4789 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Manchado, E. et al. Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α, δ phosphatase. Cancer Cell 18, 641–654 (2010). Functional characterization of CDK1, Greatwall and PP2A function in mammalian cells, providing evidence that targeting mitotic exit leads to tumour regression in a mouse model.

    Article  CAS  PubMed  Google Scholar 

  107. Skoufias, D. A., Indorato, R. L., Lacroix, F., Panopoulos, A. & Margolis, R. L. Mitosis persists in the absence of Cdk1 activity when proteolysis or protein phosphatase activity is suppressed. J. Cell Biol. 179, 671–685 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Burgess, A. et al. Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B–Cdc2/PP2A balance. Proc. Natl Acad. Sci. USA 107, 12564–12569 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Voets, E. & Wolthuis, R. M. MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell Cycle 9, 3591–3601 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Yu, J. et al. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J. Cell Biol. 164, 487–492 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bettencourt-Dias, M. et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 432, 980–987 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Yu, J., Zhao, Y., Li, Z., Galas, S. & Goldberg, M. L. Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts. Mol. Cell 22, 83–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Lorca, T. et al. Constant regulation of both the MPF amplification loop and the Greatwall–PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. J. Cell Sci. 123, 2281–2291 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Vigneron, S. et al. Greatwall maintains mitosis through regulation of PP2A. EMBO J. 28, 2786–2793 (2009). References 104 and 114 establish a link between the promitotic function of Greatwall kinase and cdk1-counteracting phosphatase PP2A–B55 in X. laevis egg extracts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao, Y. et al. Roles of Greatwall kinase in the regulation of cdc25 phosphatase. Mol. Biol. Cell 19, 1317–1327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gharbi-Ayachi, A. et al. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330, 1673–1677 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Mochida, S., Maslen, S. L., Skehel, M. & Hunt, T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330, 1670–1673 (2010). References 116 and 117 report the identification of the inhibitory proteins ENSA and ARPP19 as mediators of the inhibitory effect of Greatwall on PP2A–B55.

    Article  CAS  PubMed  Google Scholar 

  118. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Xu, Z. et al. Structure and function of the PP2A–shugoshin interaction. Mol. Cell 35, 426–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ceulemans, H. & Bollen, M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84, 1–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Bollen, M., Peti, W., Ragusa, M. J. & Beullens, M. The extended PP1 toolkit: designed to create specificity. Trends Biochem. Sci. 35, 450–458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cohen, P. T. Protein phosphatase 1 — targeted in many directions. J. Cell Sci. 115, 241–256 (2002).

    CAS  PubMed  Google Scholar 

  125. Axton, J. M., Dombradi, V., Cohen, P. T. & Glover, D. M. One of the protein phosphatase 1 isoenzymes in Drosophila is essential for mitosis. Cell 63, 33–46 (1990).

    Article  CAS  PubMed  Google Scholar 

  126. Chen, F. et al. Multiple protein phosphatases are required for mitosis in Drosophila. Curr. Biol. 17, 293–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Wu, J. Q. et al. PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nature Cell Biol. 11, 644–651 (2009). Reports a crucial role of PP1 in cdk1 substrate dephosphorylation during mitotic exit in X. laevis egg extracts, and proposes a regulatory mechanism for PP1 regulation by cdk1.

    Article  CAS  PubMed  Google Scholar 

  128. Kwon, Y. G., Lee, S. Y., Choi, Y., Greengard, P. & Nairn, A. C. Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc. Natl Acad. Sci. USA 94, 2168–2173 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dohadwala, M. et al. Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc. Natl Acad. Sci. USA 91, 6408–6412 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Che, S. et al. A phosphatase activity in Xenopus oocyte extracts preferentially dephosphorylates the MPM-2 epitope. FEBS Lett. 424, 225–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Mochida, S. & Hunt, T. Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature 449, 336–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Nishiyama, T., Yoshizaki, N., Kishimoto, T. & Ohsumi, K. Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449, 341–345 (2007). References 131 and 132 identify calcineurin as the key meiotic exit phosphatase in X. laevis.

    Article  CAS  PubMed  Google Scholar 

  133. Takeo, S., Hawley, R. S. & Aigaki, T. Calcineurin and its regulation by Sra/RCAN is required for completion of meiosis in Drosophila. Dev. Biol. 344, 957–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Lorca, T. et al. Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature 366, 270–273 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A. & Mayer, T. U. Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 1048–1052 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nature Rev. Mol. Cell Biol. 8, 798–812 (2007).

    Article  CAS  Google Scholar 

  137. Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Steigemann, P. & Gerlich, D. W. An evolutionary conserved checkpoint controls abscission timing. Cell Cycle 8, 1814–1815 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Yasui, Y. et al. Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis. J. Biol. Chem. 279, 12997–13003 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Kelly, A. E. et al. Chromosomal enrichment and activation of the Aurora B pathway are coupled to spatially regulate spindle assembly. Dev. Cell 12, 31–43 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sumara, I. et al. A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev. Cell 12, 887–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Maerki, S. et al. The Cul3-KLHL21 E3 ubiquitin ligase targets Aurora B to midzone microtubules in anaphase and is required for cytokinesis. J. Cell Biol. 187, 791–800 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Gruneberg, U., Neef, R., Honda, R., Nigg, E. A. & Barr, F. A. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J. Cell Biol. 166, 167–172 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Francisco, L., Wang, W. & Chan, C. S. Type 1 protein phosphatase acts in opposition to Ipl1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol. 14, 4731–4740 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/Aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Sassoon, I. et al. Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev. 13, 545–555 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Murnion, M. E. et al. Chromatin-associated protein phosphatase 1 regulates Aurora-B and histone H3 phosphorylation. J. Biol. Chem. 276, 26656–26665 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Emanuele, M. J. et al. Aurora B kinase and protein phosphatase 1 have opposing roles in modulating kinetochore assembly. J. Cell Biol. 181, 241–254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, W., Stukenberg, P. T. & Brautigan, D. L. Phosphatase inhibitor-2 balances protein phosphatase 1 and Aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. Mol. Biol. Cell 19, 4852–4862 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, Y., Holland, A. J., Lan, W. & Cleveland, D. W. Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142, 444–455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Posch, M. et al. Sds22 regulates Aurora B activity and microtubule-kinetochore interactions at mitosis. J. Cell Biol. 191, 61–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Trinkle-Mulcahy, L. et al. Time-lapse imaging reveals dynamic relocalization of PP1γ throughout the mammalian cell cycle. Mol. Biol. Cell 14, 107–117 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pinsky, B. A., Kung, C., Shokat, K. M. & Biggins, S. The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nature Cell Biol. 8, 78–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Petersen, J. & Hagan, I. M. S. pombe Aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr. Biol. 13, 590–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Vanoosthuyse, V. & Hardwick, K. G. A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr. Biol. 19, 1176–1181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pinsky, B. A., Nelson, C. R. & Biggins, S. Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr. Biol. 19, 1182–1187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lampson, M. A. & Cheeseman, I. M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 21, 133–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kelly, A. E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330, 235–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang, F. et al. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330, 231–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sugiyama, K. et al. Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene 21, 3103–3111 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Fuller, B. G. et al. Midzone activation of Aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008). Through the development of an Aurora B substrate phosphorylation biosensor, this study reveals a phosphorylation gradient along the spindle axis on chromatin during anaphase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  Google Scholar 

  167. Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell 9, 515–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Yamashiro, S. et al. Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing Polo-like kinase 1. Dev. Cell 14, 787–797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Matsumura, F., Yamakita, Y. & Yamashiro, S. Myosin phosphatase-targeting subunit 1 controls chromatid segregation. J. Biol. Chem. 286, 10825–10833 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. D'Avino, P. P. et al. Recruitment of Polo kinase to the spindle midzone during cytokinesis requires the Feo/Klp3A complex. PLoS ONE 2, e572 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Potapova, T. A. et al. The reversibility of mitotic exit in vertebrate cells. Nature 440, 954–958 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lopez-Aviles, S., Kapuy, O., Novak, B. & Uhlmann, F. Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459, 592–595 (2009). Combines mathematical modelling and experimental analysis in budding yeast to reveal that mitotic exit irreversibility is established through phosphoregulatory feedback loops, not protein degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kapuy, O., He, E., Uhlmann, F. & Novak, B. Mitotic exit in mammalian cells. Mol. Syst. Biol. 5, 324 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Novak, B., Kapuy, O., Domingo-Sananes, M. R. & Tyson, J. J. Regulated protein kinases and phosphatases in cell cycle decisions. Curr. Opin. Cell Biol. 22, 801–808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Potapova, T. A., Daum, J. R., Byrd, K. S. & Gorbsky, G. J. Fine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit. Mol. Biol. Cell 20, 1737–1748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Holt, L. J., Krutchinsky, A. N. & Morgan, D. O. Positive feedback sharpens the anaphase switch. Nature 454, 353–357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Lesage, B. et al. A complex of catalytically inactive protein phosphatase-1 sandwiched between Sds22 and inhibitor-3. Biochemistry 46, 8909–8919 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Eto, M., Elliott, E., Prickett, T. D. & Brautigan, D. L. Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. J. Biol. Chem. 277, 44013–44020 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Xu, Y., Chen, Y., Zhang, P., Jeffrey, P. D. & Shi, Y. Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol. Cell 31, 873–885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ragusa, M. J. et al. Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nature Struct. Mol. Biol. 17, 459–464 (2010).

    Article  CAS  Google Scholar 

  182. Terrak, M., Kerff, F., Langsetmo, K., Tao, T. & Dominguez, R. Structural basis of protein phosphatase 1 regulation. Nature 429, 780–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Di Fiore, B. & Pines, J. How cyclin A destruction escapes the spindle assembly checkpoint. J. Cell Biol. 190, 501–509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Izawa, D. & Pines, J. How APC/C–Cdc20 changes its substrate specificity in mitosis. Nature Cell Biol. 13, 223–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Depry, C. & Zhang, J. Visualization of kinase activity with FRET-based activity biosensors. Curr. Protoc. Mol. Biol. 1 Jul 2010 (doi:10.1002/0471142727.mb1815s91).

  188. Gavet, O. & Pines, J. Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol. 189, 247–259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tseng, B. S., Tan, L., Kapoor, T. M. & Funabiki, H. Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly. Dev. Cell 18, 903–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003).

    Article  CAS  PubMed  Google Scholar 

  191. Lu, Y. & Cross, F. R. Periodic cyclin–Cdk activity entrains an autonomous Cdc14 release oscillator. Cell 141, 268–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 (1993).

    CAS  PubMed  Google Scholar 

  194. Gascoigne, K. E. & Taylor, S. S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci. 122, 2579–2585 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Huang, H. C., Mitchison, T. J. & Shi, J. Stochastic competition between mechanistically independent slippage and death pathways determines cell fate during mitotic arrest. PLoS ONE 5, e15724 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mena, A. L., Lam, E. W. & Chatterjee, S. Sustained spindle-assembly checkpoint response requires de novo transcription and translation of cyclin B1. PLoS ONE 5, e13037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Malureanu, L. et al. Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis. J. Cell Biol. 191, 313–329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zeng, X. et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 18, 382–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Huang, H. C., Shi, J., Orth, J. D. & Mitchison, T. J. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16, 347–358 (2009). Analyses the effects of mitotic exit inhibition on mitotic cell death in cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Dick for comments on the manuscript. Research in the laboratory of D.W.G. has received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreements number 241548 (MitoSys) and number 258068 (Systems Microscopy), and from a European Young Investigator (EURYI) award of the European Science Foundation and a European Molecular Biology Organization (EMBO) Young Investigators Programme (YIP) fellowship to D.W.G. Work by C.W. was funded by a Boehringer Ingelheim Fonds fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Gerlich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Daniel W. Gerlich's homepage

Glossary

Nuclear envelope

Two membranes surrounding the cell nucleus, of which the outer membrane is continuous with the endoplasmic reticulum. The nuclear envelope in higher eukaryotes also contains a lamina adjacent to the inner nuclear membrane.

Mitotic spindle

An assembly of centrosomes, microtubules and chromosomes that supports chromosome segregation.

Kinetochores

Multiprotein structures that assemble at the centromere and mediate attachment of chromosomes to microtubules of the mitotic spindle.

APC/C

(Anaphase-promoting complex, also known as the cyclosome). A large E3 ubiquitin ligase protein complex that targets mitotic cyclins and securin for 26S proteasome-mediated proteolysis. CDC20 or CDC20 homologue 1 (CDH1) are alternative APC/C co-activators that determine substrate specificity.

E3 ubiquitin ligase

An enzyme that, in conjunction with an E2 ubiquitin-conjugating enzyme, covalently attaches ubiquitin to a Lys residue on target proteins.

26S proteasome

A large protein complex that degrades Lys48-linked polyubiquitylated proteins by proteolysis.

Ubiquitin

A 76-amino-acid regulatory protein that can be covalently linked to target proteins by E3 ubiquitin ligases. Chains of ubiquitin linked by a Lys48 residue target proteins for 26S proteasome-mediated destruction.

Spindle assembly checkpoint

A signalling network that inhibits the activity of the APC/C (anaphase-promoting complex, also known as the cyclosome) and its co-activator CDC20 in the presence of unattached or tension-less kinetochores.

Separase

A protease that cleaves cohesin complexes at the metaphase-to-anaphase transition to enable chromosome segregation. In budding yeast, separase further inhibits protein phosphatase PP2A–CDC55 independently of its catalytic activity.

Cohesin

A protein complex that mediates cohesion between replicated sister chromatids.

Dual-specificity phosphatase

A phosphatase that removes phosphates from Ser/Thr and Tyr.

Chromosomal passenger complex

A complex of Aurora B kinase and its regulatory cofactors, inner centromere protein (INCENP), borealin and survivin. It is activated on centromeres during early mitosis and is then transferred to the central spindle at anaphase onset.

Nucleolus

A non-membrane-bounded nuclear structure at which ribosomal gene transcription and pre-ribosome assembly occurs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wurzenberger, C., Gerlich, D. Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12, 469–482 (2011). https://doi.org/10.1038/nrm3149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3149

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing