Abstract
Ageing is widely believed to be a non-adaptive process that results from a decline in the force of natural selection. However, recent studies in Saccharomyces cerevisiae are consistent with the existence of a programme of altruistic ageing and death. We suggest that the similarities between the molecular pathways that regulate ageing in yeast, worms, flies and mice, together with evidence that is consistent with programmed death in salmon and other organisms, raise the possibility that programmed ageing or death can also occur in higher eukaryotes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Finch, C. E. Longevity, Senescence, and the Genome (University Press, Chicago, 1990).
Martin, G. M., Austad, S. N. & Johnson, T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nature Genet. 13, 25–34 (1996).
Nemoto, S. & Finkel, T. Ageing and the mystery at Arles. Nature 429, 149–152 (2004).
Austad, S. N. Is aging programmed? Aging Cell 3, 249–251 (2004).
Longo, V. D. & Finch, C. E. Evolutionary medicine: from dwarf model systems to healthy centenarians. Science 299, 1342–1346 (2003).
Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).
Herker, E. et al. Chronological aging leads to apoptosis in yeast. J. Cell Biol. 164, 501–507 (2004).
Fabrizio, P. et al. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J. Cell Biol. 166, 1055–1067 (2004).
Longo, V. D., Ellerby, L. M., Bredesen, D. E., Valentine, J. S. & Gralla, E. B. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J. Cell Biol. 137, 1581–1588 (1997).
Harman, D. A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).
Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).
Weissmann, A. Essays upon Heredity and Kindred Biological Problems (Claderon, Oxford, 1889).
Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).
Mitteldorf, J. Can experiments on caloric restriction be reconciled with the disposable soma theory for the evolution of senescence? Evolution Int. J. Org. Evolution 55, 1902–1905; discussion 1906 (2001).
Shanley, D. P. & Kirkwood, T. B. Calorie restriction and aging: a life-history analysis. Evolution Int. J. Org. Evolution 54, 740–750 (2000).
Walker, D. W., McColl, G., Jenkins, N. L., Harris, J. & Lithgow, G. J. Evolution of lifespan in C. elegans. Nature 405, 296–297 (2000).
Jenkins, N. L., McColl, G. & Lithgow, G. J. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc. Biol. Sci. 271, 2523–2526 (2004).
Medawar, P. An Unsolved Problem in Biology (HK Lewis, London, 1952).
Shaw, F. H., Promislow, D. E., Tatar, M., Hughes, K. A. & Geyer, C. J. Toward reconciling inferences concerning genetic variation in senescence in Drosophila melanogaster. Genetics 152, 553–566 (1999).
Mair, W., Goymer, P., Pletcher, S. D. & Partridge, L. Demography of dietary restriction and death in Drosophila. Science 301, 1731–1733 (2003).
Merry, B. J. Molecular mechanisms linking calorie restriction and longevity. Int. J. Biochem. Cell Biol. 34, 1340–1354 (2002).
Partridge, L., Pletcher, S. D. & Mair, W. Dietary restriction, mortality trajectories, risk and damage. Mech. Ageing Dev. 126, 35–41 (2005).
Sun, J. & Tower, J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19, 216–228 (1999).
Sun, J., Folk, D., Bradley, T. J. & Tower, J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161, 661–72 (2002).
Fabrizio, P. et al. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35–46 (2003).
Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001).
Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).
Gallagher, I. M., Jenner, P., Glover, V. & Clow, A. CuZn-superoxide dismutase transgenic mice: no effect on longevity, locomotor activity and 3H-mazindol and 3H-spiperone binding over 19 months. Neurosci. Lett. 289, 221–223 (2000).
Schriner, S. E. et al. Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).
Bredesen, D. E. The non-existent aging program: how does it work? Aging Cell 3, 255–259 (2004).
Hamilton, W. D. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–16 (1964).
Wilson, D. S. Human groups as units of selection. Science 276, 1816–1817 (1997).
Wynne-Edwards, V. C. Animal Dispersion in Relation to Social Behaviour (Oliver & Boyd, Edinburgh, 1962).
Mitteldorf, J. in Proc. 9th Int. Conf. Simulation Synthesis Living Systems (MIT Press, Boston, 2004).
Skulachev, V. P. in Topics in Current Genetics Vol. 3 (eds Nystrom, T. & Osiewacz, H. D.) 191–238 (Springer, Heidelberg, 2003).
Jin, C. & Reed, J. C. Yeast and apoptosis. Nature Rev. Mol. Cell Biol. 3, 453–459 (2002).
Ligr, M. et al. Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett. 438, 61–65 (1998).
Skulachev, V. P. Programmed death in yeast as adaptation? FEBS Lett. 528, 23–26 (2002).
Frohlich, K. & Madeo, F. Apoptosis in yeast — a monocellular organism exhibits altruistic behaviour. FEBS Lett. 473, 6–9 (2000).
Madeo, F. et al. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757–767 (1999).
Ludovico, P., Sousa, M. J., Silva, M. T., Leao, C. & Corte-Real, M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147, 2409–2415 (2001).
Madeo, F. et al. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9, 911–917 (2002).
Narasimhan, M. L. et al. A plant defense response effector induces microbial apoptosis. Mol. Cell 8, 921–930 (2001).
Severin, F. F. & Hyman, A. A. Pheromone induces programmed cell death in S. cerevisiae. Curr. Biol. 12, R233–R235 (2002).
Pozniakovsky, A. I. et al. Role of mitochondria in the pheromone- and amiodarone-induced programmed death in yeast. J. Cell Biol. 168, 257–269 (2005).
Longo, V. D. The Pro-Senescence Role of Ras2 in the Chronological Life Span of Yeast. Thesis, Univ. California (1997).
Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503–514 (2000).
Fabrizio, P. & Longo, V. D. The chronological life span of Saccharomyces cerevisiae. Aging Cell 2, 73–81 (2003).
Jazwinski, S. M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91, 35–51 (1993).
Zambrano, M. M., Siegele, D. A., Almiron, M., Tormo, A. & Kolter, R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259, 1757–1760 (1993).
Mitteldorf, J. Aging selected for its own sake. Evol. Ecol. Res. 6, 1–17 (2004).
Kirkwood, T. B. & Cremer, T. Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Hum. Genet. 60, 101–121 (1982).
Wodinsky, J. Hormonal inhibition of feeding and death in octopus: control by optic gland secretion. Science 198, 948–951 (1977).
Robertson, O. H. & Wexler, B. C. Histological changes in the organs and tissues of senile castrated kokanee salmon (Oncorhynchus nerka kennerlyi). Gen. Comp. Endocrinol. 2, 458–472 (1962).
Zyuganov, V. V. Long-lived parasite prolonging life of his host. Dokl. Acad. Nauk (in the press).
Loison, A., Festa-Bianchet, M., Gaillard, J. M., Jorgenson, J. T. & Jullien, J. M. Age-specific survival in five populations of ungulates: evidence of senescence. Ecology 80, 2539–2554 (1999).
Darwin, C. The Descent of Man (John Murray, London, 1871).
Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phospatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 (1996).
Longo, V. D., Gralla, E. B. & Valentine, J. S. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J. Biol. Chem. 271, 12275–12280 (1996).
Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).
Longo, V. D. & Fabrizio, P. Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell. Mol. Life Sci. 59, 903–908 (2002).
Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).
Flurkey, K., Papaconstantinou, J. & Harrison, D. E. The Snell dwarf mutation Pit1dw can increase life span in mice. Mech. Ageing Dev. 123, 121–30. (2002).
Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).
Coschigano, K. T., Clemmons, D., Bellush, L. L. & Kopchick, J. J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613 (2000).
Brown-Borg, H. M. & Rakoczy, S. G. Catalase expression in delayed and premature aging mouse models. Exp. Gerontol. 35, 199–212 (2000).
Brown-Borg, H. M., Rakoczy, S. G., Romanick, M. A. & Kennedy, M. A. Effects of growth hormone and insulin-like growth factor-1 on hepatocyte antioxidative enzymes. Exp. Biol. Med. 227, 94–104 (2002).
Sharma, H. S., Nyberg, F., Gordh, T., Alm, P. & Westman, J. Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. An experimental study using immunohistochemistry in the rat. Amino Acids 19, 351–361 (2000).
Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).
Maynard Smith, J. Group selection and kin selection. Nature 201, 1145–1147 (1964).
Shanahan, T. The troubled past and uncertain future of group selectionism. Endeavour 22, 57–60 (1998).
Acknowledgements
We thank C. E. Finch for careful review of the manuscript and helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Longo, V., Mitteldorf, J. & Skulachev, V. Programmed and altruistic ageing. Nat Rev Genet 6, 866–872 (2005). https://doi.org/10.1038/nrg1706
Issue Date:
DOI: https://doi.org/10.1038/nrg1706
This article is cited by
-
Ageing as a software design flaw
Genome Biology (2023)
-
Directional selection coupled with kin selection favors the establishment of senescence
BMC Biology (2023)
-
Dynamics of redox signaling in aging via autophagy, inflammation, and senescence
Biogerontology (2023)
-
Why Gilgamesh failed: the mechanistic basis of the limits to human lifespan
Nature Aging (2022)
-
Biologia Futura: four questions about ageing and the future of relevant animal models
Biologia Futura (2022)