Abstract
The yeastSaccharomyces cerevisiae possesses a finite life span similar in many attributes and implications to that of higher eukaryotes. Here, the measure of the life span is the number of generations or divisions the yeast cell has undergone. The yeast cell is the organism, simplifying many aspects of aging research. Most importantly, the genetics of yeast is highly-developed and readily applicable to the dissection of longevity. Two candidate longevity genes have already been identified and are being characterized. Others will follow through the utilization of both the primary phenotype and the secondary phenotypes associated with aging in yeast. An ontogenetic theory of longevity that follows from the evolutionary biology of aging is put forward in this article. This theory has at its foundation the asymmetric reproduction of cells and organisms, and it makes specific predictions regarding the genetics, molecular mechanisms, and phenotypic features of longevity and senescence, including these: GTP-binding proteins will frequently be involved in determining longevity, asymmetric cell division will be often encountered during embryogenesis while binary fission will be more characteristic of somatic cell division, tumor cells of somatic origin will not be totipotent, and organisms that reproduce symmetrically will not have intrinsic limits to their longevity.
Similar content being viewed by others
References
Adams, J., C. Paquin, P. W. Oeller & L. Lee, 1985. Physiological characterization of adaptive clones in evolving populations of the yeast,Saccharomyces cerevisiae. Genetics 110: 173–185.
Andrews, B. J., 1992. Dialogue with the cell cycle. Nature 355: 393–394.
Barbacid, M., 1987.ras genes. Annu. Rev. Biochem. 56: 779–827.
Baroni, M. D., E. Martegani, P. Monti & L. Alberghina, 1989. Cell size modulation byCDC25 andRAS2 genes inSaccharomyces cerevisiae. Mol. Cell. Biol. 9: 2715–2723.
Bartholomew, J. W. & T. Mittwer, 1953. Demonstration of yeast bud scars with the electron microscope. J. Bacteriol. 65: 272–275.
Barton, A. A., 1950. Some aspects of cell division inSaccharomyces cerevisiae. J. Gen. Microbiol. 4: 84–87.
Beran, K., I. Malek, E. Streiblova & J. Lieblova, 1967. The distribution of the relative age of cells in yeast populations, pp. 57–67 in Microbial Physiology and Continuous Culture, edited by E. O. Powell, C. G. T. Evans R. E. Strange and D. W. Tempest. Her Majesty's Stationery Office, London, England.
Broach, J. R. & R. J. Deschenes, 1990. The function ofRAS genes inSaccharomyces cerevisiae. Adv. Cancer Res. 54: 79–139.
Byers, B. & L. Sowder, 1980. Gene expression in the yeast cell cycle. J. Cell Biol. 87: 6a.
Cabib, E., R. Ulane & B. Bowers, 1974. A molecular model for morphogenesis: The primary septum of yeast. Curr. Top. Cell. Regul. 8: 1–32.
Chen, J. B., J. Sun & S. M. Jazwinski, 1990. Prolongation of the yeast life span by the v-Ha-RAS oncogene. Molec. Microbiol. 4: 2081–2086.
Choder, M., 1991. A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes & Dev. 5: 2315–2326.
Cohen, P., 1985. The role of protein phosphorylation in the hormonal control of enzyme activity. Eur. J. Biochem. 151: 439–448.
D'mello, N. P. & S. M. Jazwinski, 1991. Telomere length constancy during aging ofSaccharomyces cerevisiae. J. Bacteriol. 173: 6709–6713.
Donoghue, M. J., R. Morris-Valero, Y. R. Johnson, J. P. Merlie & J. R. Sanes, 1992. Mammalian muscle cells bear a cell-autonomous, heritable memory of their rostrocaudal position. Cell 69: 67–77.
Drebot, M., G. C. Johnson & R. A. Singer, 1987. A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase. Proc. Natl. Acad. Sci. USA 84: 7984–7952.
Egilmez, N. K. & S. M. Jazwinski, 1989. Evidence for the involvement of a cytoplasmic factor in the aging of the yeastSaccharomyces cerevisiae. J. Bacteriol. 171: 37–42.
Egilmez, N. K., J. B. Chen & S. M. Jazwinski, 1989. Specific alterations in transcript prevalence during the yeast life span. J. Biol. Chem. 264: 14312–14317.
Egilmez, N. K., J. B. Chen & S. M. Jazwinski, 1990. Preparation and partial characterization of old yeast cells. J. Gerontol. 45: B9–17.
Gimeno, C. J., P. O. Ljungdahl, C. A. Styles & G. R. Fink, 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation andRAS. Cell 68: 1077–1090.
Goebl, M. G. & T. D. Petes, 1986. Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46: 983–992.
Guthrie, C. & G. R. Fink (editors), 1991. Guide to Yeast Genetics and Molecular Biology. Academic Press, San Diego, CA.
Hartwell, L., 1991. Pathways of morphogenesis. Nature 352: 663–664.
Hirakawa, T. & H. E. Ruley, 1988. Rescue of cells fromras oncogene-induced growth arrest by a second, complementing, oncogene. Proc. Natl. Acad. Sci. USA 85: 1519–1523.
Hirsch, H. R. & M. Witten, 1991. Dilution theory applied to a senescence factor in the ageing of yeast cells. FASEB J. 5: A1475.
Holm, C., 1982. Clonal lethality caused by the yeast plasmid 2μ DNA. Cell 29: 585–594.
James, A. P., B. F. Johnson, E. R. Inhaber & N. T. Gridgeman, 1975. A kinetic analysis of spontaneous ρ− mutations in yeast. Mutat. Res. 30: 199–208.
Jazwinski, S. M., 1990. Aging and senescence of the budding yeastSaccharomyces cerevisiae. Molec. Microbiol. 4: 337–343.
Jazwinski, S. M., 1990a. An experimental system for the molecular analysis of the aging process: The budding yeastSaccharomyces cerevisiae. J. Gerontol. 45: B68–74.
Jazwinski, S. M., N. K. Egilmez & J. B. Chen, 1989. Replication control and cellular life span. Exp. Gerontol. 24: 423–436.
Jazwinski, S. M., J. B. Chen & N. E. Jeansonne, 1990. Replication control and differential gene expression in aging yeast, pp. 189–203 in The Molecular Biology of Aging, edited by C. E. Finch and T. E. Johnson. Alan R. Liss, New York, NY.
Jazwinski, S. M. 1993. Genes of youth:, Genetics of aging in baker's yeast. ASM News 59: 172–178.
Johnson, B. F. & C. Lu, 1975. Morphometric analysis of yeast cells IV. Increase of the cylindrical diameter ofSchizosacharomyces pombe during the cell cycle. Exp. Cell Res. 95: 154–158.
Johnston, J. R., 1966. Reproductive capacity and mode of death of yeast cells. Antonie van Leeuwenhoek. J. Microbiol. Serol. 32: 94–98.
Kemphues, K. J., J. R. Priess, D. G. Morton & N. Cheng, 1988. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.
Lew, D. J., N. J. Marini & S. I. Reed, 1992. Different G1 cyclins control the timing of cell cycle commitment in mother and daughter cells of the budding yeast S: cerevisiae. Cell 69: 317–327.
Lewin, B., 1990. Driving the cell cycle: M phase kinase, its partners, and substrates. Cell 61: 743–752.
Link, A. J. & M. V. Olson, 1991. Physical map of theSaccharomyces cerevisiae genome at 110-kilobase resolution. Genetics 127: 681–698.
Lundblad, V. & J. W. Szostak, 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.
Mortimer, R. K. & J. R. Johnston, 1959. Life span of individual yeast cells. Nature 183: 1751–1752.
Motizuki, M. & K. Tsurugi, 1992. The effect of aging on protein synthesis in the yeastSaccharomyces cerevisiae. Mech. Ageing Dev. 64: 235–245.
Motizuki, M. & K. Tsurugi, 1992a. Effect of 17β-estradiol on the generation time of old cells of the yeastSaccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 183: 1191–1196.
Mowry, K. L. & D. A. Melton, 1992. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element inXenopus oocytes. Science 255: 991–994.
Muller, I., M. Zimmermann, D. Becker & M. Flomer, 1980. Calendar life span versus budding life span ofSaccharomyces cerevisiae. Mech. Ageing Dev. 12: 47–52.
Muller, I., 1971. Experiments on ageing in single cells ofSaccharomyces cerevisiae. Arch. Mikrobiol. 77: 20–25.
Muller, I., 1985. Parental age and the life-span of zygotes ofSaccharomyces cerevisiae. Antonie van Leeuwenhoek J. Microbiol. Serol. 51: 1–10.
Muller, I. & F. Wolf, 1978. A correlation between shortened life span and UV-sensitivity in some strains ofSaccharomyces cerevisiae. Molec. Gen. Genet. 160: 231–234.
Munkres, K. D., 1985. Aging in fungi, pp. 29–43 in Review of Biological Research in Aging, Vol. 2, edited by M. Rothstein. Alan R. Liss, New York, NY.
Nasmyth, K. & D. Shore, 1987. Transcriptional regulation in the yeast life cycle. Science 237: 1162–1170.
Neff, M. W. & D. J. Burke, 1991. Random segregation of chromatids at mitosis inSaccharomyces cerevisiae. Genetics 127: 463–473.
Oliver, S. G. et al. (147 authors), 1992. The complete DNA sequence of yeast chromosome III. Nature 357: 38–46.
Paquin, C. & J. Adams, 1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302: 495–500.
Paquin, C. E. & J. Adams, 1983a. Relative fitness can decrease in evolving asexual populations ofS.cerevisiae. Nature 306: 368–371.
Park, E.-C., D. Finley & J. W. Szostak, 1992. A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. USA 89: 1249–1252.
Pillus, L. & J. Rine, 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59: 637–647.
Pohley, H.-J., 1987. A formal mortality analysis for populations of unicellular organisms (Saccharomyces cerevisiae). Mech. Ageing Dev. 38: 231–243.
Pringle, J. R., 1993. Cell polarity in yeast. Annu. Rev. Cell. Biol. 9 (in press).
Pringle, J. R. & L. H. Hartwell, 1981. TheSaccharomyces cerevisiae cell cycle, pp. 97–142 in The Molecular Biology of the YeastSaccharomyces: Life Cycle and Inheritance, edited by J. N. Strathern, E. W. Jones & J. R. Broach. Cold Spring Harbor Press, Cold Spring Harbor, NY.
Rivier, D. H. & J. Rine, 1992. An origin of DNA replication and a transcription silencer require a common element. Science 256: 659–663.
Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford University Press, New York, NY.
Sando, N., M. Maeda, T. Endo, R. Oka & M. Hayashibe, 1973. Induction of meiosis and sporulation in differently aged cells ofSaccharomyces cerevisiae. J. Gen. Appl. Microbiol. 19: 359–373.
Sclafani, R. A., M. Patterson, J. Rosamond & W. L. Fangman, 1988. Differential regulation of the yeastCDC gene during mitosis and meiosis. Mol. Cell. Biol. 8: 293–300.
Strathern, J. N., E. W. Jones & J. R. Broach (editors), 1981. The Molecular Biology of the YeastSaccharomyces: Life Cycle and Inheritance. Cold Spring Harbor Press, Cold Spring Harbor, NY.
Strathern J. N., E. W. Jones & J. R. Broach (editors), 1982. The Molecular Biology of the YeastSaccharomyces. Metabolism and Gene Expression. Cold Spring Harbor Press, Cold Spring Harbor, NY.
Tyson, C. B., P. G. Lord & A. E. Wheals, 1979. Dependency of size ofSaccharomyces cerevisiae cells on growth rate. J. Bacteriol. 138: 92–98.
Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee & M. D. Rose, 1992. Asymmetric mitotic segregation of the yeast spindle pole body. Cell 69: 505–515.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jazwinski, S.M. The genetics of aging in the yeastSaccharomyces cerevisiae . Genetica 91, 35–51 (1993). https://doi.org/10.1007/BF01435986
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01435986