[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endoplasmic reticulum proteostasis in hepatic steatosis

Key Points

  • Increased lipid content in the steatotic liver induces chronic endoplasmic reticulum (ER) stress, mainly via the alteration of Ca2+ homeostasis

  • Classic ER stress responses such as ER-associated degradation and the unfolded protein response take place to counteract ER stress

  • In the context of the fatty liver, autophagy is unlikely to contribute to the ER stress defence process

  • Rather than alleviating ER stress, aspects of the ER stress responses instead promote hepatocyte lipid accumulation and are, therefore, implicated in the progression of nonalcoholic liver disease.

Abstract

Hepatic steatosis, the first step in the progression of nonalcoholic fatty liver disease, is characterized by triglyceride accumulation in hepatocytes and is highly prevalent in people with obesity. Although initially asymptomatic, hepatic steatosis is an important risk factor for the development of hepatic insulin resistance and type 2 diabetes mellitus and can also progress to more severe pathologies such as nonalcoholic steatohepatitis, liver fibrosis and cirrhosis; hepatic steatosis has, therefore, received considerable research interest in the past 20 years. The lipid accumulation that defines hepatic steatosis disturbs the function of the endoplasmic reticulum (ER) in hepatocytes, thereby generating chronic ER stress that interferes with normal cellular function. Although ubiquitous stress response mechanisms (namely, ER-associated degradation, unfolded protein response and autophagy) are the main processes for restoring cellular proteostasis, these mechanisms are unable to alleviate ER stress in the context of the fatty liver. Furthermore, ER stress and ER stress responses can promote lipid accumulation in hepatocytes in a counter-productive manner and could, therefore, be the origin of a vicious pathological cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ER stress and associated lines of defence.
Figure 2: The unfolded protein response.
Figure 3: ER stress and hepatic steatosis: a vicious cycle.

Similar content being viewed by others

References

  1. Takahara, M. & Shimomura, I. Metabolic syndrome and lifestyle modification. Rev. Endocr. Metab. Disord. 15, 317–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Sherif, Z. A. et al. Global epidemiology of nonalcoholic fatty liver disease and perspectives on US minority populations. Dig. Dis. Sci. 61, 1214–1225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yoon, H. J. & Cha, B. S. Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease. World J. Hepatol 6, 800–811 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Day, C. P. & James, O. F. Steatohepatitis: a tale of two 'hits'? Gastroenterology 114, 842–845 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Leroux, A. et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J. Hepatol. 57, 141–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Luukkonen, P. K. et al. Ceramides dissociate steatosis and insulin resistance in the human liver in non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Aarsland, A., Chinkes, D. & Wolfe, R. R. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J. Clin. Invest. 98, 2008–2017 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diraison, F., Pachiaudi, C. & Beylot, M. Measuring lipogenesis and cholesterol synthesis in humans with deuterated water: use of simple gas chromatographic/mass spectrometric techniques. J. Mass Spectrom. 32, 81–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotronen, A. et al. Liver fat and lipid oxidation in humans. Liver Int. 29, 1439–1446 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs, C. D., Claudel, T. & Trauner, M. Role of metabolic lipases and lipolytic metabolites in the pathogenesis of NAFLD. Trends Endocrinol. Metab. 25, 576–585 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Milic, S., Lulic, D. & Stimac, D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J. Gastroenterol. 20, 9330–9337 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Jeong, S. K., Kim, Y. K., Park, J. W., Shin, Y. J. & Kim, D. S. Impact of visceral fat on the metabolic syndrome and nonalcoholic fatty liver disease. J. Korean Med. Sci. 23, 789–795 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miquilena-Colina, M. E. et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60, 1394–1402 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Jornayvaz, F. R. & Shulman, G. I. Diacylglycerol activation of protein kinase Cɛ and hepatic insulin resistance. Cell Metab. 15, 574–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Williams, K. H., Shackel, N. A., Gorrell, M. D., McLennan, S. V. & Twigg, S. M. Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr. Rev. 34, 84–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kantartzis, K. et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 58, 2616–2623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yki-Jarvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2, 901–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Turban, S. & Hajduch, E. Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance. FEBS Lett. 585, 269–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Magkos, F. et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444–1446.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Shibata, Y., Voeltz, G. K. & Rapoport, T. A. Rough sheets and smooth tubules. Cell 126, 435–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Voeltz, G. K., Rolls, M. M. & Rapoport, T. A. Structural organization of the endoplasmic reticulum. EMBO Rep. 3, 944–950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rush, J. S., Sweitzer, T., Kent, C., Decker, G. L. & Waechter, C. J. Biogenesis of the endoplasmic reticulum in activated B lymphocytes: temporal relationships between the induction of protein N-glycosylation activity and the biosynthesis of membrane protein and phospholipid. Arch. Biochem. Biophys. 284, 63–70 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Sato, T. & Herman, L. Stereological analysis of normal rabbit pancreatic islets. Am. J. Anat. 161, 71–84 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Shohat, M., Janossy, G. & Dourmashkin, R. R. Development of rough endoplasmic reticulum in mouse splenic lymphocytes stimulated by mitogens. Eur. J. Immunol. 3, 680–687 (1973).

    Article  CAS  PubMed  Google Scholar 

  28. Slavin, B. G., Beigelman, P. M. & Bessman, S. P. Cytophysiological studies on isolated pancreatic islets in vitro. Anat. Rec. 188, 445–452 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. Wiest, D. L. et al. Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately. J. Cell Biol. 110, 1501–1511 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. English, A. R., Zurek, N. & Voeltz, G. K. Peripheral ER structure and function. Curr. Opin. Cell Biol. 21, 596–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Senft, D. & Ronai, Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lomas, D. A., Evans, D. L., Finch, J. T. & Carrell, R. W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357, 605–607 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 (2012).

    Article  CAS  Google Scholar 

  34. Malhi, H. & Kaufman, R. J. Endoplasmic reticulum stress in liver disease. J. Hepatol. 54, 795–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Shen, J., Snapp, E. L., Lippincott-Schwartz, J. & Prywes, R. Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol. Cell Biol. 25, 921–932 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Donnelly, N., Gorman, A. M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70, 3493–3511 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Reid, D. W., Chen, Q., Tay, A. S., Shenolikar, S. & Nicchitta, C. V. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 158, 1362–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Ma, Y., Brewer, J. W., Diehl, J. A. & Hendershot, L. M. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318, 1351–1365 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Harding, H. P. et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2α) dephosphorylation in mammalian development. Proc. Natl Acad. Sci. USA 106, 1832–1837 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Berlanga, J. J., Herrero, S. & de Haro, C. Characterization of the hemin-sensitive eukaryotic initiation factor 2α kinase from mouse nonerythroid cells. J. Biol. Chem. 273, 32340–32346 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Berlanga, J. J., Santoyo, J. & De Haro, C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase. Eur. J. Biochem. 265, 754–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Romano, P. R. et al. Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2α kinases PKR and GCN2. Mol. Cell. Biol. 18, 2282–2297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cullinan, S. B. & Diehl, J. A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 279, 20108–20117 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Tirasophon, W., Lee, K., Callaghan, B., Welihinda, A. & Kaufman, R. J. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 2725–2736 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, K. et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J. 30, 1357–1375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, A. H., Scapa, E. F., Cohen, D. E. & Glimcher, L. H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492–1496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Moore, K. & Hollien, J. Ire1-mediated decay in mammalian cells relies on mRNA sequence, structure, and translational status. Mol. Biol. Cell 26, 2873–2884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. So, J. S. et al. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 16, 487–499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. So, J. S., Cho, S., Min, S. H., Kimball, S. R. & Lee, A. H. IRE1α-dependent decay of CReP/Ppp1r15b mRNA increases eukaryotic initiation factor 2α phosphorylation and suppresses protein synthesis. Mol. Cell. Biol. 35, 2761–2770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science. 318, 994–999 (2007).

    Google Scholar 

  56. Lerner, A. G. et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Hetz, C., Chevet, E. & Oakes, S. A. Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17, 829–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Madrigal-Matute, J. & Cuervo, A. M. Regulation of liver metabolism by autophagy. Gastroenterology 150, 328–329 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Salazar, M. et al. The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action. Biochim. Biophys. Acta 1831, 1573–1578 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Deegan, S. et al. A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy. Biochem. Biophys. Res. Commun. 456, 305–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Park, C. & Cuervo, A. M. Selective autophagy: talking with the UPS. Cell Biochem. Biophys. 67, 3–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brenner, C., Galluzzi, L., Kepp, O. & Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, I., Xu, W. & Reed, J. C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7, 1013–1030 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, D., Wei, Y. & Pagliassotti, M. J. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147, 943–951 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Gregor, M. F. et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58, 693–700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Puri, P. et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134, 568–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Kharroubi, I. et al. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology 145, 5087–5096 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Cunha, D. A. et al. Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J. Cell Sci. 121, 2308–2318 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Karaskov, E. et al. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 147, 3398–3407 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Wei, Y., Wang, D., Topczewski, F. & Pagliassotti, M. J. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab. 291, E275–E281 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Feng, B. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol. 5, 781–792 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Ariyama, H., Kono, N., Matsuda, S., Inoue, T. & Arai, H. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem. 285, 22027–22035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hyslop, P. A., York, D. A. & Corina, D. L. Changes in the composition and fluidity of membranes in obese (ob/ob) mice: a study of hepatic microsomal NADPH-cytochrome P450 oxidoreductase activity. Int. J. Obes. 6, 279–289 (1982).

    CAS  PubMed  Google Scholar 

  82. Kim, H. J. et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 10, 722–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Arruda, A. P. & Hotamisligil, G. S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22, 381–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Promlek, T. et al. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol. Biol. Cell 22, 3520–3532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shelness, G. S., Ingram, M. F., Huang, X. F. & DeLozier, J. A. Apolipoprotein B in the rough endoplasmic reticulum: translation, translocation and the initiation of lipoprotein assembly. J. Nutr. 129, 456S–462S (1999).

    CAS  PubMed  Google Scholar 

  88. Lee, J. S., Mendez, R., Heng, H. H., Yang, Z. Q. & Zhang, K. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am. J. Transl. Res. 4, 102–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferre, P. & Foufelle, F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes. Metab. 12 (Suppl. 2), 83–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Y., Viscarra, J., Kim, S. J. & Sul, H. S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hegarty, B. D. et al. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc. Natl Acad. Sci. USA 102, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Kammoun, H. L. et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119, 1201–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, J. N. & Ye, J. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J. Biol. Chem. 279, 45257–45265 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Ning, J. et al. Constitutive role for IRE1α–XBP1 signaling pathway in the insulin-mediated hepatic lipogenic program. Endocrinology 152, 2247–2255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang, S. et al. Fibroblast growth factor 21 is regulated by the IRE1α–XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J. Biol. Chem. 289, 29751–29765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bobrovnikova-Marjon, E. et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc. Natl Acad. Sci. USA 105, 16314–16319 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Oyadomari, S., Harding, H. P., Zhang, Y., Oyadomari, M. & Ron, D. Dephosphorylation of translation initiation factor 2α enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 7, 520–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xiao, G. et al. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J. Biol. Chem. 288, 25350–25361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maris, M. et al. Deletion of C/EBP homologous protein (Chop) in C57Bl/6 mice dissociates obesity from insulin resistance. Diabetologia 55, 1167–1178 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, Z. et al. The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome. Rev. Endocr. Metab. Disord. 16, 35–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Jo, H. et al. Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor. Hepatology 57, 1366–1377 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Howarth, D. L. et al. Activating transcription factor 6 is necessary and sufficient for alcoholic fatty liver disease in zebrafish. PLoS Genet. 10, e1004335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Morris, E. M., Rector, R. S., Thyfault, J. P. & Ibdah, J. A. Mitochondria and redox signaling in steatohepatitis. Antioxid. Redox Signal. 15, 485–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Satapati, S. et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 53, 1080–1092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14, 804–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta. 184, 595–609 (2014).

    Article  CAS  Google Scholar 

  108. Bravo, R. et al. Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143–2152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ngoh, G. A., Papanicolaou, K. N. & Walsh, K. Loss of mitofusin 2 promotes endoplasmic reticulum stress. J. Biol. Chem. 287, 20321–20332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rainbolt, T. K., Saunders, J. M. & Wiseman, R. L. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol. Metab. 25, 528–537 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Denton, R. M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309–1316 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. McCormack, J. G. & Denton, R. M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem. J. 180, 533–544 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Egnatchik, R. A., Leamy, A. K., Jacobson, D. A., Shiota, M. & Young, J. D. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol. Metab. 3, 544–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gorlach, A., Bertram, K., Hudecova, S. & Krizanova, O. Calcium and ROS: a mutual interplay. Redox Biol. 6, 260–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Peng, T. I. & Jou, M. J. Oxidative stress caused by mitochondrial calcium overload. Ann. NY Acad. Sci. 1201, 183–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Scharwey, M., Tatsuta, T. & Langer, T. Mitochondrial lipid transport at a glance. J. Cell Sci. 126, 5317–5323 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Schenkel, L. C. & Bakovic, M. Formation and regulation of mitochondrial membranes. Int. J. Cell Biol. 2014, 709828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vernia, S. et al. The PPARα–FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab. 20, 512–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pal, M., Febbraio, M. A. & Lancaster, G. I. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J. Physiol. 594, 267–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Win, S., Than, T. A., Fernandez-Checa, J. C. & Kaplowitz, N. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis. 5, e989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Win, S., Than, T. A., Han, D., Petrovic, L. M. & Kaplowitz, N. c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice. J. Biol. Chem. 286, 35071–35078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Win, S. et al. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J. Hepatol. 62, 1367–1374 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Win, S., Than, T. A., Min, R. W., Aghajan, M. & Kaplowitz, N. JNK mediates mouse liver injury through a novel Sab (SH3BP5) dependent pathway leading to inactivation of intramitochondrial Src. Hepatology 63, 1987–1987 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, T. F. et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab. 16, 213–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Ota, T., Gayet, C. & Ginsberg, H. N. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J. Clin. Invest. 118, 316–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Theesfeld, C. L., Pourmand, D., Davis, T., Garza, R. M. & Hampton, R. Y. The sterol-sensing domain (SSD) directly mediates signal-regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase isozyme Hmg2. J. Biol. Chem. 286, 26298–26307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schuck, S., Prinz, W. A., Thorn, K. S., Voss, C. & Walter, P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187, 525–536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Choi, K. et al. Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation. FEBS J. 281, 3048–3060 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, Y. et al. Knockdown of acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim. Biophys. Acta 1781, 97–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jurczak, M. J. et al. Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J. Biol. Chem. 287, 2558–2567 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Oberkofler, H. et al. Aberrant hepatic TRIB3 gene expression in insulin-resistant obese humans. Diabetologia 53, 1971–1975 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Iynedjian, P. B. Lack of evidence for a role of TRB3/NIPK as an inhibitor of PKB-mediated insulin signalling in primary hepatocytes. Biochem. J. 386, 113–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kim, J. S. et al. Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 47, 1725–1736 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Rodriguez-Navarro, J. A. et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 109, E705–E714 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Koga, H., Kaushik, S. & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052–3065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Park, H. W. & Lee, J. H. Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy 10, 2385–2386 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Schneider, J. L., Suh, Y. & Cuervo, A. M. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 20, 417–432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lindor, K. D. et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 39, 770–778 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, X. et al. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis 21, 721–736 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Ding, X., Saxena, N. K., Lin, S., Gupta, N. A. & Anania, F. A. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43, 173–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Sharma, S., Mells, J. E., Fu, P. P., Saxena, N. K. & Anania, F. A. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 6, e25269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Bowes, A. J., Khan, M. I., Shi, Y., Robertson, L. & Werstuck, G. H. Valproate attenuates accelerated atherosclerosis in hyperglycemic apoE-deficient mice: evidence in support of a role for endoplasmic reticulum stress and glycogen synthase kinase-3 in lesion development and hepatic steatosis. Am. J. Pathol. 174, 330–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kudo, T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 15, 364–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Axten, J. M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Boyce, M. et al. A selective inhibitor of eIF2αa dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Braakman, I. & Bulleid, N. J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80, 71–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Brodsky, J. L. & Skach, W. R. Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr. Opin. Cell Biol. 23, 464–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Goldfarb, S. Submicrosomal localization of hepatic 3-hydroxy-3-methylglutaryl coenzyme a (HMG-CoA) reductase. FEBS Lett. 24, 153–155 (1972).

    Article  CAS  PubMed  Google Scholar 

  158. Mandon, E. C., Ehses, I., Rother, J., van Echten, G. & Sandhoff, K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J. Biol. Chem. 267, 11144–11148 (1992).

    CAS  PubMed  Google Scholar 

  159. McFie, P. J., Stone, S. L., Banman, S. L. & Stone, S. J. Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the n terminus in dimer/tetramer formation. J. Biol. Chem. 285, 37377–37387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lev, S. Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. http://dx.doi.org/10.1101/cshperspect.a013300 (2012).

  161. Gorelick, F. S. & Shugrue, C. Exiting the endoplasmic reticulum. Mol. Cell. Endocrinol. 177, 13–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Fujii-Kuriyama, Y., Negishi, M., Mikawa, R. & Tashiro, Y. Biosynthesis of cytochrome P-450 on membrane-bound ribosomes and its subsequent incorporation into rough and smooth microsomes in rat hepatocytes. J. Cell Biol. 81, 510–519 (1979).

    Article  CAS  PubMed  Google Scholar 

  163. Masaki, R., Matsuura, S. & Tashiro, Y. A biochemical and electron microscopic study of changes in the content of cytochrome P-450 in rat livers after cessation of treatment with phenobarbital, β-naphtoflavone or 3-methylcholanthrene. Cell Struct. Funct. 9, 53–66 (1984).

    Article  CAS  PubMed  Google Scholar 

  164. Boden, G. et al. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver. Obesity (Silver Spring) 19, 1366–1373 (2011).

    Article  CAS  Google Scholar 

  165. Boden, G. et al. Insulin regulates the unfolded protein response in human adipose tissue. Diabetes 63, 912–922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Deng, Y. et al. The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. J. Clin. Invest. 123, 455–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Hur, K. Y. et al. IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J. Exp. Med. 209, 307–318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by INSERM, CNRS and the Fondation pour la Recherche Médicale (équipe FRM DEQ20140329504), France. P.M. is the recipient of a fellowship from the Institute of Cardiometabolism and Nutrition (ICAN), France. A.B. is supported by a scholarship from the Fondation Jacques Tacussel, France. We apologize to our colleagues whose work could not been cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and researched data for the article, M.L. and F.F. contributed substantially to the discussion of article content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Fabienne Foufelle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baiceanu, A., Mesdom, P., Lagouge, M. et al. Endoplasmic reticulum proteostasis in hepatic steatosis. Nat Rev Endocrinol 12, 710–722 (2016). https://doi.org/10.1038/nrendo.2016.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing