Key Points
-
Cancer treatments are associated with substantial neurotoxicity, which is a diagnosis of exclusion
-
Treatments affect both the central and peripheral nervous systems
-
Biological and immunological therapies have different mechanisms of toxicity
-
Recognition of neurotoxicity is important to prevent further neurological injury and to distinguish this toxicity from nervous system involvement of cancer
Abstract
Neurotoxicity caused by traditional chemotherapy and radiotherapy is widely recognized in patients with cancer. The adverse effects of newer therapeutics, such as biological and immunotherapeutic agents, are less well established, and are associated with considerable neurotoxicity in the central and peripheral nervous systems. This Review addresses the main neurotoxicities of cancer treatment with a focus on the newer therapeutics. Recognition of these patterns of toxicity is important because drug discontinuation or dose adjustment might prevent further neurological injury. Knowledge of these toxicities also helps to differentiate treatment-related symptoms from progression of cancer or its involvement of the nervous system. Familiarity with the neurological syndromes associated with cancer treatments enables clinicians to use the appropriate treatment for the underlying malignancy while minimizing the risk of neurological damage, which might preserve patients' quality of life.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
DeAngelis, L. M. & Posner, J. B. Neurologic Complications of Cancer 2nd edn. (Oxford University Press, 2008).
Argyriou, A. A., Bruna, J., Marmiroli, P. & Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit. Rev. Oncol. Hematol. 82, 51–77 (2012).
Roman, D. D. & Sperduto, P. W. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int. J. Radiat. Oncol. Biol. Phys. 31, 983–998 (1995).
Letarte, N., Bressler, L. R. & Villano, J. L. Bevacizumab and central nervous system (CNS) hemorrhage. Cancer Chemother. Pharmacol. 71, 1561–1565 (2013).
Bot., I., Blank, C. U., Boogerd, W. & Brandsma, D. Neurological immune-related adverse events of ipilimumab. Pract. Neurol. 13, 278–280 (2013).
Magge, R. S. & DeAngelis, L. M. The double-edged sword: neurotoxicity of chemotherapy. Blood Rev. 29, 93–100 (2015).
Soffietti, R., Trevisan, E. & Ruda, R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb. Clin. Neurol. 121, 1199–1218 (2014).
Plotkin, S. R. & Wen, P. Y. Neurologic complications of cancer therapy. Neurol. Clin. 21, 279–318 (2003).
Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).
Greene-Schloesser, D. et al. Radiation-induced brain injury: a review. Front. Oncol. 2, 73 (2012).
Rogers, L. R. Neurologic complications of radiation. Continuum (Minneap. Minn.) 18, 343–354 (2012).
Kimby, E. Tolerability and safety of rituximab (MabThera). Cancer Treat. Rev. 31, 456–473 (2005).
Baselga, J. et al. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J. Clin. Oncol. 23, 2162–2171 (2005).
Dillman, R. O. Infusion reactions associated with the therapeutic use of monoclonal antibodies in the treatment of malignancy. Cancer Metastasis Rev. 18, 465–471 (1999).
Goldenberg, M. M. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Ther. 21, 309–318 (1999).
van Rooij, F. G., Dorresteijn, L. D., Van Bokhoven, M. M. & Verstappen, C. C. A throbbing pain in the head: trastuzumab-induced migraine. Anticancer Res. 29, 4223–4225 (2009).
Pfeiffer, P. et al. Cetuximab and irinotecan as third line therapy in patients with advanced colorectal cancer after failure of irinotecan, oxaliplatin and 5-fluorouracil. Acta Oncol. 46, 697–701 (2007).
Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).
Davila, M. L. et al. Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. Int. J. Hematol. 99, 361–371 (2014).
Meyers, C. A., Scheibel, R. S. & Forman, A. D. Persistent neurotoxicity of systemically administered interferon-α. Neurology 41, 672–676 (1991).
Biesma, B. et al. Effects of interleukin-3 after chemotherapy for advanced ovarian cancer. Blood 80, 1141–1148 (1992).
Jolles, S., Sewell, W. A. & Leighton, C. Drug-induced aseptic meningitis: diagnosis and management. Drug Saf. 22, 215–226 (2000).
Verstappen, C. C., Heimans, J. J., Hoekman, K. & Postma, T. J. Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 63, 1549–1563 (2003).
Jaeckle, K. A. et al. An open label trial of sustained-release cytarabine (DepoCyt) for the intrathecal treatment of solid tumor neoplastic meningitis. J. Neurooncol. 57, 231–239 (2002).
Slater, L. M., Wainer, R. A. & Serpick, A. A. Vincristine neurotoxicity with hyponatremia. Cancer 23, 122–125 (1969).
Kwong, Y. L., Yeung, D. Y. & Chan, J. C. Intrathecal chemotherapy for hematologic malignancies: drugs and toxicities. Ann. Hematol. 88, 193–201 (2009).
Sul, J. K. & Deangelis, L. M. Neurologic complications of cancer chemotherapy. Semin. Oncol. 33, 324–332 (2006).
Lee, E. Q., Arrillaga-Romany, I. C. & Wen, P. Y. Neurologic complications of cancer drug therapies. Continuum (Minneap. Minn.) 18, 355–365 (2012).
Maude, S. L., Teachey, D. T., Porter, D. L. & Grupp, S. A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125, 4017–4023 (2015).
Davila, M. L. et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).
Rohatiner, A. Z. et al. Central nervous system toxicity of interferon. Br. J. Cancer 47, 419–422 (1983).
Sioka, C. & Kyritsis, A. P. Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemother. Pharmacol. 63, 761–767 (2009).
Denicoff, K. D. et al. The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann. Intern. Med. 107, 293–300 (1987).
Lee, Y. W., Cho, H. J., Lee, W. H. & Sonntag, W. E. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol. Ther. (Seoul) 20, 357–370 (2012).
[No authors listed] Chemotherapy of metastatic colorectal cancer. Prescrire Int. 19, 219–224 (2010).
Ryan, J. Radiation somnolence syndrome. J. Pediatr. Oncol. Nurs. 17, 50–53 (2000).
Dietrich, J., Monje, M., Wefel, J. & Meyers, C. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 13, 1285–1295 (2008).
Matsubayashi, J., Tsuchiya, K., Matsunaga, T. & Mukai, K. Methotrexate-related leukoencephalopathy without radiation therapy: distribution of brain lesions and pathological heterogeneity on two autopsy cases. Neuropathology 29, 105–115 (2009).
Myers, J. S. Chemotherapy-related cognitive impairment. Clin. J. Oncol. Nurs. 13, 413–421 (2009).
Tipples, K., Kolluri, R. B. & Raouf, S. Encephalopathy secondary to capecitabine chemotherapy: a case report and discussion. J. Oncol. Pharm. Pract. 15, 237–239 (2009).
Waber, D. P. et al. Neuropsychological outcomes from a randomized trial of triple intrathecal chemotherapy compared with 18 Gy cranial radiation as CNS treatment in acute lymphoblastic leukemia: findings from Dana-Farber Cancer Institute ALL Consortium Protocol 95–01. J. Clin. Oncol. 25, 4914–4921 (2007).
Warrington, J. P. et al. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J. Vasc. Res. 50, 445–457 (2013).
Monje, M. L. & Palmer, T. Radiation injury and neurogenesis. Curr. Opin. Neurol. 16, 129–134 (2003).
Christie, L. A. et al. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin. Cancer Res. 18, 1954–1965 (2012).
Monje, M. & Dietrich, J. Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav. Brain Res. 227, 376–379 (2012).
Myers, J. S. The possible role of cytokines in chemotherapy-induced cognitive deficits. Adv. Exp. Med. Biol. 678, 119–123 (2010).
Monje, M. Cranial radiation therapy and damage to hippocampal neurogenesis. Dev. Disabil. Res. Rev. 14, 238–242 (2008).
Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).
Gondi, V. et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J. Clin. Oncol. 32, 3810–3816 (2014).
Radiation Therapy Oncology Group. RTOG 0933 Protocol Information [online], (2012).
Han, R. et al. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol. 7, 12 (2008).
Panagiotakos, G. et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS ONE 2, e588 (2007).
Sierra, A., Laitinen, T., Grohn, O. & Pitkanen, A. Diffusion tensor imaging of hippocampal network plasticity. Brain Struct. Funct. 220, 781–801 (2015).
Berger, J. R. Progressive multifocal leukoencephalopathy. Curr. Neurol. Neurosci. Rep. 7, 461–469 (2007).
Vidarsson, B., Mosher, D. F., Salamat, M. S., Isaksson, H. J. & Onundarson, P. T. Progressive multifocal leukoencephalopathy after fludarabine therapy for low-grade lymphoproliferative disease. Am. J. Hematol. 70, 51–54 (2002).
Carson, K. R. et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113, 4834–4840 (2009).
Isidoro, L., Pires, P., Rito, L. & Cordeiro, G. Progressive multifocal leukoencephalopathy in a patient with chronic lymphocytic leukaemia treated with alemtuzumab. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2013-201781 (2014).
Carson, K. R. et al. Progressive multifocal leukoencephalopathy associated with brentuximab vedotin therapy: a report of 5 cases from the Southern Network on Adverse Reactions (SONAR) project. Cancer 120, 2464–2471 (2014).
Strandgaard, S. & Paulson, O. B. Cerebral autoregulation. Stroke 15, 413–416 (1984).
Savvidou, M. D. et al. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet 361, 1511–1517 (2003).
Marra, A. et al. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med. Hypotheses 82, 619–622 (2014).
Lamy, C., Oppenheim, C. & Mas, J. L. Posterior reversible encephalopathy syndrome. Handb. Clin. Neurol. 121, 1687–1701 (2014).
Bhatt, A., Farooq, M. U., Majid, A. & Kassab, M. Chemotherapy-related posterior reversible leukoencephalopathy syndrome. Nat. Clin. Pract. Neurol. 5, 163–169 (2009).
Glusker, P., Recht, L. & Lane, B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N. Engl. J. Med. 354, 980–982 (2006).
Grisold, W., Oberndorfer, S. & Struhal, W. Stroke and cancer: a review. Acta Neurol. Scand. 119, 1–16 (2009).
Li, S. H. et al. Incidence of ischemic stroke post-chemotherapy: a retrospective review of 10,963 patients. Clin. Neurol. Neurosurg. 108, 150–156 (2006).
Rogers, L. R. Cerebrovascular complications in patients with cancer. Semin. Neurol. 24, 453–460 (2004).
Rollins, N., Winick, N., Bash, R. & Booth, T. Acute methotrexate neurotoxicity: findings on diffusion-weighted imaging and correlation with clinical outcome. AJNR Am. J. Neuroradiol. 25, 1688–1695 (2004).
Hodi, F. S. et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2, 632–642 (2014).
Haykin, M. E., Gorman, M., van Hoff, J., Fulbright, R. K. & Baehring, J. M. Diffusion-weighted MRI correlates of subacute methotrexate-related neurotoxicity. J. Neurooncol. 76, 153–157 (2006).
Wani, N. A., Kosar, T., Pala, N. A. & Qureshi, U. A. Sagittal sinus thrombosis due to L-asparaginase. J. Pediatr. Neurosci. 5, 32–35 (2010).
Elice, F., Rodeghiero, F., Falanga, A. & Rickles, F. R. Thrombosis associated with angiogenesis inhibitors. Best Pract. Res. Clin. Haematol. 22, 115–128 (2009).
Odia, Y., Shih, J. H., Kreisl, T. N. & Fine, H. A. Bevacizumab-related toxicities in the National Cancer Institute malignant glioma trial cohort. J. Neurooncol. 120, 431–440 (2014).
Schutz, F. A., Je, Y., Azzi, G. R., Nguyen, P. L. & Choueiri, T. K. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes. Ann. Oncol. 22, 1404–1412 (2011).
O'Connor, M. M. & Mayberg, M. R. Effects of radiation on cerebral vasculature: a review. Neurosurgery 46, 138–149 (2000).
Di Giannatale, A. et al. Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J. Neurooncol. 117, 311–320 (2014).
Ferroli, P. et al. Cerebral cavernomas and seizures: a retrospective study on 163 patients who underwent pure lesionectomy. Neurol. Sci. 26, 390–394 (2006).
Baker, W. J., Royer, G. L. Jr & Weiss, R. B. Cytarabine and neurologic toxicity. J. Clin. Oncol. 9, 679–693 (1991).
Herzig, R. H. et al. Cerebellar toxicity with high-dose cytosine arabinoside. J. Clin. Oncol. 5, 927–932 (1987).
Dworkin, L. A., Goldman, R. D., Zivin, L. S. & Fuchs, P. C. Cerebellar toxicity following high-dose cytosine arabinoside. J. Clin. Oncol. 3, 613–616 (1985).
Land, S. R. et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSABP C-07. J. Clin. Oncol. 25, 2205–2211 (2007).
DiPalma, J. R. Metoclopramide: a dopamine receptor antagonist. Am. Fam. Physician 41, 919–924 (1990).
Rao, A. S. & Camilleri, M. Review article: metoclopramide and tardive dyskinesia. Aliment. Pharmacol. Ther. 31, 11–19 (2010).
Fink, J., Born, D. & Chamberlain, M. C. Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr. Neurol. Neurosci. Rep. 12, 276–285 (2012).
Chen, J. et al. Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiat. Oncol. 6, 128 (2011).
Levin, V. A. et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 79, 1487–1495 (2011).
Kerklaan, J. P. et al. SMART syndrome: a late reversible complication after radiation therapy for brain tumours. J. Neurol. 258, 1098–1104 (2011).
Farid, K. et al. Normal cerebrovascular reactivity in stroke-like migraine attacks after radiation therapy syndrome. Clin. Nucl. Med. 35, 583–585 (2010).
Sadetzki, S. et al. Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat. Res. 163, 424–432 (2005).
Balasubramaniam, A. et al. Glioblastoma multiforme after stereotactic radiotherapy for acoustic neuroma: case report and review of the literature. Neuro Oncol. 9, 447–453 (2007).
Sheehan, J., Yen, C. P. & Steiner, L. Gamma knife surgery-induced meningioma. Report of two cases and review of the literature. J. Neurosurg. 105, 325–329 (2006).
Taieb, S., Trillet-Lenoir, V., Rambaud, L., Descos, L. & Freyer, G. Lhermitte sign and urinary retention: atypical presentation of oxaliplatin neurotoxicity in four patients. Cancer 94, 2434–2440 (2002).
Calabro, F. & Jinkins, J. R. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur. Radiol. 10, 1079–1084 (2000).
Glantz, M. J. et al. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44, 2020–2027 (1994).
Liao, B., Shroff, S., Kamiya-Matsuoka, C. & Tummala, S. Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro Oncol. 16, 589–593 (2014).
Bowen, B. C., Verma, A., Brandon, A. H. & Fiedler, J. A. Radiation-induced brachial plexopathy: MR and clinical findings. AJNR Am. J. Neuroradiol. 17, 1932–1936 (1996).
Kori, S. H., Foley, K. M. & Posner, J. B. Brachial plexus lesions in patients with cancer: 100 cases. Neurology 31, 45–50 (1981).
Powell, S., Cooke, J. & Parsons, C. Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother. Oncol. 18, 213–220 (1990).
Esteban, A. & Traba, A. Fasciculation-myokymic activity and prolonged nerve conduction block. A physiopathological relationship in radiation-induced brachial plexopathy. Electroencephalogr. Clin. Neurophysiol. 89, 382–391 (1993).
Johansson, S. Radiation induced brachial plexopathies. Acta Oncol. 45, 253–257 (2006).
Cavaletti, G. & Zanna, C. Current status and future prospects for the treatment of chemotherapy-induced peripheral neurotoxicity. Eur. J. Cancer 38, 1832–1837 (2002).
Stubblefield, M. D. et al. NCCN task force report: management of neuropathy in cancer. J. Natl Compr. Canc. Netw. 7 (Suppl. 5), S1–S26 (2009).
Cavaletti, G. Peripheral neurotoxicity of platinum-based chemotherapy. Nat. Rev. Cancer 8, http://dx.doi.org/10.1038/nrc2167-c1 (2008).
Cavaletti, G., Alberti, P., Frigeni, B., Piatti, M. & Susani, E. Chemotherapy-induced neuropathy. Curr. Treat. Options Neurol. 13, 180–190 (2011).
Lee, J. J. & Swain, S. M. Peripheral neuropathy induced by microtubule-stabilizing agents. J. Clin. Oncol. 24, 1633–1642 (2006).
Park, S. B. et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 63, 419–437 (2013).
Walsh, T. J., Clark, A. W., Parhad, I. M. & Green, W. R. Neurotoxic effects of cisplatin therapy. Arch. Neurol. 39, 719–720 (1982).
Toyooka, K. & Fujimura, H. Iatrogenic neuropathies. Curr. Opin. Neurol. 22, 475–479 (2009).
Miltenburg, N. C. & Boogerd, W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat. Rev. 40, 872–882 (2014).
Mayer, E. L. Early and late long-term effects of adjuvant chemotherapy. Am. Soc. Clin. Oncol. Educ. Book 2013, 9–14 (2013).
Hansen, S. W. Autonomic neuropathy after treatment with cisplatin, vinblastine, and bleomycin for germ cell cancer. BMJ 300, 511–512 (1990).
Cassier, P. A. et al. Gemcitabine and oxaliplatin combination chemotherapy for metastatic well-differentiated neuroendocrine carcinomas: a single-center experience. Cancer 115, 3392–3399 (2009).
Cavaletti, G. et al. Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur. J. Cancer 46, 479–494 (2010).
Cavaletti, G. & Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol. 6, 657–666 (2010).
Chen, W. W., Wang, F. & Xu, R. H. Platinum-based versus non-platinum-based chemotherapy as first line treatment of inoperable, advanced gastric adenocarcinoma: a meta-analysis. PLoS ONE 8, e68974 (2013).
Dormann, A. J., Grunewald, T., Wigginghaus, B. & Huchzermeyer, H. Gemcitabine-associated autonomic neuropathy. Lancet 351, 644 (1998).
Dropcho, E. J. Neurotoxicity of cancer chemotherapy. Semin. Neurol. 30, 273–286 (2010).
Gaurav, K., Goel, R. K., Shukla, M. & Pandey, M. Glutamine: a novel approach to chemotherapy-induced toxicity. Indian J. Med. Paediatr. Oncol. 33, 13–20 (2012).
Giglio, P. & Gilbert, M. R. Neurologic complications of cancer and its treatment. Curr. Oncol. Rep. 12, 50–59 (2010).
Beijers, A. J., Jongen, J. L. & Vreugdenhil, G. Chemotherapy-induced neurotoxicity: the value of neuroprotective strategies. Neth. J. Med. 70, 18–25 (2012).
Loprinzi, C. L. et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J. Clin. Oncol. 32, 997–1005 (2014).
Hershman, D. L. et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 32, 1941–1967 (2014).
Amara, S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann. Pharmacother. 42, 1481–1485 (2008).
Diouf, B. et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313, 815–823 (2015).
Ohsawa, M. et al. Gabapentin prevents oxaliplatin-induced mechanical hyperalgesia in mice. J. Pharmacol. Sci. 125, 292–299 (2014).
Park, H. J. Chemotherapy induced peripheral neuropathic pain. Korean J. Anesthesiol. 67, 4–7 (2014).
Ziegler, D. & Fonseca, V. From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J. Diabetes Complications 29, 146–156 (2015).
Badros, A. et al. Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 110, 1042–1049 (2007).
Richardson, P. G. et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J. Clin. Oncol. 24, 3113–3120 (2006).
Seretny, M., Colvin, L. & Fallon, M. Therapy for chemotherapy-induced peripheral neuropathy. JAMA 310, 537–538 (2013).
Martin, T. et al. Baseline peripheral neuropathy does not impact the efficacy and tolerability of the novel proteasome inhibitor carfilzomib (CFZ): results of a subset analysis of a phase 2 trial in patients with relapsed and refractory multiple myeloma (R/R MM) [abstract]. ASH Annual Meeting Abstracts 116, a3031 (2010).
Mileshkin, L. et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J. Clin. Oncol. 24, 4507–4514 (2006).
Mazumder, A. & Jagannath, S. Thalidomide and lenalidomide in multiple myeloma. Best Pract. Res. Clin. Haematol. 19, 769–780 (2006).
Begna, K. H. et al. A phase-2 trial of low-dose pomalidomide in myelofibrosis. Leukemia 25, 301–304 (2011).
Kreisl, T. N. Neurologic complications of antitumor antibody therapies. Curr. Neurol. Neurosci. Rep. 8, 259–263 (2008).
Younes, A. et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 363, 1812–1821 (2010).
Soffietti, R., Trevisan, E. & Ruda, R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb. Clin. Neurol. 121, 1199–1218 (2014).
Weber, J. S., Kahler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).
Puduvalli, V. K., Sella, A., Austin, S. G. & Forman, A. D. Carpal tunnel syndrome associated with interleukin-2 therapy. Cancer 77, 1189–1192 (1996).
Liao, B., Shroff, S., Kamiya-Matsuoka, C. & Tummala, S. Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro. Oncol. 16, 589–593 (2014).
Bot, I., Blank, C. U., Boogerd, W. & Brandsma, D. Neurological immune-related adverse events of ipilimumab. Pract. Neurol. 13, 278–280 (2013).
Bora, I. et al. Myasthenia gravis following IFN-α-2a treatment. Eur. Neurol. 38, 68 (1997).
Srinivasan, J., Wu, C. J. & Amato, A. A. Inflammatory myopathy associated with imatinib mesylate therapy. J. Clin. Neuromuscul. Dis. 5, 119–121 (2004).
Pentsova, E. et al. Gemcitabine induced myositis in patients with pancreatic cancer: case reports and topic review. J. Neurooncol. 106, 15–21 (2012).
Chen, X., Schwartz, G. K., DeAngelis, L. M., Kaley, T. & Carvajal, R. D. Dropped head syndrome: report of three cases during treatment with a MEK inhibitor. Neurology 79, 1929–1931 (2012).
Rowin, J., Cheng, G., Lewis, S. L. & Meriggioli, M. N. Late appearance of dropped head syndrome after radiotherapy for Hodgkin's disease. Muscle Nerve 34, 666–669 (2006).
Bowen, J., Gregory, R., Squier, M. & Donaghy, M. The post-irradiation lower motor neuron syndrome neuronopathy or radiculopathy? Brain 119, 1429–1439 (1996).
Travis, L. B. et al. Chemotherapy-induced peripheral neurotoxicity and ototoxicity: new paradigms for translational genomics. J. Natl Cancer Inst. 106, dju044 (2014).
Argyriou, A. A. et al. A randomized controlled trial evaluating the efficacy and safety of vitamin E supplementation for protection against cisplatin-induced peripheral neuropathy: final results. Support. Care Cancer 14, 1134–1140 (2006).
Author information
Authors and Affiliations
Contributions
Both authors researched data for article, wrote the manuscript and reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
PowerPoint slides
Rights and permissions
About this article
Cite this article
Stone, J., DeAngelis, L. Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat Rev Clin Oncol 13, 92–105 (2016). https://doi.org/10.1038/nrclinonc.2015.152
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrclinonc.2015.152
This article is cited by
-
CKM and TERT dual promoters drive CRISPR–dCas9 to specifically inhibit the malignant behavior of osteosarcoma cells
Cellular & Molecular Biology Letters (2023)
-
Targeting drugs to tumours using cell membrane-coated nanoparticles
Nature Reviews Clinical Oncology (2023)
-
Role of resting-state functional MRI in detecting brain functional changes following radiotherapy for head and neck cancer: a systematic review and meta-analysis
Strahlentherapie und Onkologie (2023)
-
Neurology of cancer immunotherapy
Neurological Sciences (2023)
-
The Kaiser Permanente Research Bank Cancer Cohort: a collaborative resource to improve cancer care and survivorship
BMC Cancer (2022)