[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host

Abstract

Although at the genetic level cancer is caused by diverse mutations, epigenetic modifications are characteristic of all cancers, from apparently normal precursor tissue to advanced metastatic disease, and these epigenetic modifications drive tumour cell heterogeneity. We propose a unifying model of cancer in which epigenetic dysregulation allows rapid selection for tumour cell survival at the expense of the host. Mechanisms involve both genetic mutations and epigenetic modifications that disrupt the function of genes that regulate the epigenome itself. Several exciting recent discoveries also point to a genome-scale disruption of the epigenome that involves large blocks of DNA hypomethylation, mutations of epigenetic modifier genes and alterations of heterochromatin in cancer (including large organized chromatin lysine modifications (LOCKs) and lamin-associated domains (LADs)), all of which increase epigenetic and gene expression plasticity. Our model suggests a new approach to cancer diagnosis and therapy that focuses on epigenetic dysregulation and has great potential for risk detection and chemoprevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alterations in the cancer epigenome that can cause epigenetic dysregulation.
Figure 2: Modelling epigenetic dysregulation using an Ornstein–Uhlenbeck process.
Figure 3: Collaboration of epigenetic modification and mutation in the hallmarks of cancer.

Similar content being viewed by others

References

  1. Weinhouse, S. Isozymes in cancer. Cancer Res. 31, 1166–1167 (1971).

    CAS  PubMed  Google Scholar 

  2. Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Greger, V., Passarge, E., Hopping, W., Messmer, E. & Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 83, 155–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Sakai, T. et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Amer. J. Hum. Genet. 48, 880–888 (1991).

    CAS  Google Scholar 

  7. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nature Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Boveri, T. Concerning the Origin of Malignant Tumors (Williams and Wilkins, 1929).

    Google Scholar 

  9. Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nature Rev. Cancer 4, 677–687 (2004).

    Article  CAS  Google Scholar 

  10. Lever, E. & Sheer, D. The role of nuclear organization in cancer. J. Pathol. 220, 114–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. & Feinberg, A. P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nature Genet. 41, 246–250 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Zullo, J. M. et al. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149, 1474–1487 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Hu, S., Cheng, L. & Wen, B. Large chromatin domains in pluripotent and differentiated cells. Acta Biochim. Biophys. Sin. (Shanghai) 44, 48–53 (2012).

    Article  CAS  Google Scholar 

  14. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    CAS  Google Scholar 

  15. Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Chow, K. H., Factor, R. E. & Ullman, K. S. The nuclear envelope environment and its cancer connections. Nature Rev. Cancer 12, 196–209 (2012).

    Article  CAS  Google Scholar 

  17. Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hon, G. C. et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 22, 246–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonald, O. G., Wu, H., Timp, W., Doi, A. & Feinberg, A. P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nature Struct. Mol. Biol. 18, 867–874 (2011).

    Article  CAS  Google Scholar 

  20. Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nature Rev. Genet. 12, 7–18 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. Wen, B. et al. Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions. BMC Genomics 13, 566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nature Genet. 44, 40–46 (2012).

    Article  CAS  Google Scholar 

  23. Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 1, 239–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De, S. & Michor, F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nature Struct. Mol. Biol. 18, 950–955 (2011).

    Article  CAS  Google Scholar 

  27. Nestor, C., Ruzov, A., Meehan, R. & Dunican, D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48, 317–319 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Jin, S.-G., Kadam, S. & Pfeifer, G. P. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 38, e125 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen, M.-L. et al. Quantification of 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from hepatocellular carcinoma tissues by capillary hydrophilic-interaction liquid chromatography/quadrupole TOF mass spectrometry. Clin. Chem. 59, 824–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lian, Christine, G. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135–1146 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhang, L.-T. et al. Quantification of the sixth DNA base 5-hydroxymethylcytosine in colorectal cancer tissue and C-26 cell line. Bioanalysis 5, 839–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Sun, Z. et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep. 3, 567–576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolf, S. F. & Migeon, B. R. Studies of X chromosome DNA methylation in normal human cells. Nature 295, 667–671 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Bird, A., Taggart, M., Frommer, M., Miller, O. J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–99 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Goelz, S. E., Vogelstein, B., Hamilton, S. R. & Feinberg, A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187–190 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Feinberg, A. P., Gehrke, C. W., Kuo, K. C. & Ehrlich, M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48, 1159–1161 (1988).

    CAS  PubMed  Google Scholar 

  38. Feinberg, A. P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun. 111, 47–54 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. De Smet, C. et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl Acad. Sci. USA 93, 7149–7153 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iacobuzio-Donahue, C. A. et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Amer. J. Pathol. 162, 1151–1162 (2003).

    CAS  Google Scholar 

  41. Oshimo, Y. et al. Promoter methylation of cyclin D2 gene in gastric carcinoma. Int. J. Oncol. 23, 1663–1670 (2003).

    CAS  PubMed  Google Scholar 

  42. Akiyama, Y., Maesawa, C., Ogasawara, S., Terashima, M. & Masuda, T. Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am. J. Pathol. 163, 1911–1919 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho, M. et al. Hypomethylation of the MN/CA9 promoter and upregulated MN/CA9 expression in human renal cell carcinoma. Br. J. Cancer 85, 563–567 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakamura, N. & Takenaga, K. Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin. Exper. Metastasis 16, 471–479 (1998).

    Article  CAS  Google Scholar 

  45. Badal, V. et al. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J. Virol. 77, 6227–6234 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Capoa, A. et al. DNA demethylation is directly related to tumour progression: evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol. Rep. 10, 545–549 (2003).

    CAS  PubMed  Google Scholar 

  47. Sato, N. et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 63, 4158–4166 (2003).

    CAS  PubMed  Google Scholar 

  48. Piyathilake, C. J. et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control 14, 37–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011).

    Article  CAS  Google Scholar 

  50. Jones, P. A. et al. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. Natl Acad. Sci. USA 87, 6117–6121 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bestor, T. H. Unanswered questions about the role of promoter methylation in carcinogenesis. Ann. NY Acad. Sci. 983, 22–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Hosoya, K. et al. Adenomatous polyposis coli 1A is likely to be methylated as a passenger in human gastric carcinogenesis. Cancer Lett. 285, 182–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Levanon, D. et al. Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Mol. Med. 3, 593–604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hitchins, M. P. et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N. Engl. J. Med. 356, 697–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hitchins, M. P. & Ward, R. L. Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nature Genet. 39, 1289 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3, 89–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sproul, D. et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc. Natl Acad. Sci. USA 108, 4364–4369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sproul, D. et al. Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol. 13, R84 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Irizarry, R. A. et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. 18, 780–790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genet. 41, 178–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genet. 41, 1350–1353 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Teschendorff, A. et al. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 4, 24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Corrada Bravo, H., Pihur, V., McCall, M., Irizarry, R. & Leek, J. Gene expression anti-profiles as a basis for accurate universal cancer signatures. BMC Bioinformatics 13, 272 (2012).

    Article  PubMed Central  Google Scholar 

  64. Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med. 13, 373–380 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Roberts, C. W. & Orkin, S. H. The SWI/SNF complex--chromatin and cancer. Nature Rev. Cancer 4, 133–142 (2004).

    Article  CAS  Google Scholar 

  67. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet. 37, 1090–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zofall, M. et al. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 461, 419–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gardner, K. E., Allis, C. D. & Strahl, B. D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409, 36–46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Young, N. L. et al. High throughput characterization of combinatorial histone codes. Mol. Cell. Proteomics 8, 2266–2284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet. 39, 157–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Chodavarapu, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guil, S. & Esteller, M. Cis-acting noncoding RNAs: friends and foes. Nature Struct. Mol. Biol. 19, 1068–1075 (2012).

    Article  CAS  Google Scholar 

  81. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nature Rev. Cancer 7, 823–833 (2007).

    Article  CAS  Google Scholar 

  87. Yan, X. J. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nature Genet. 43, 309–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kosmider, O. et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 94, 1676–1681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nature Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cooper, D. N., Mort, M., Stenson, P. D., Ball, E. V. & Chuzhanova, N. A. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum. Genomics 4, 406–410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schuster-Bockler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012).

    Article  PubMed  CAS  Google Scholar 

  101. Jiang, Y. et al. Common fragile sites are characterized by histone hypoacetylation. Hum. Mol. Genet. 18, 4501–4512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fudenberg, G., Getz, G., Meyerson, M. & Mirny, L. A. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotech. 29, 1109–1113 (2011).

    Article  CAS  Google Scholar 

  103. Miremadi, A., Oestergaard, M. Z., Pharoah, P. D. & Caldas, C. Cancer genetics of epigenetic genes. Human Mol. Genet. 16 (Suppl. 1), R28–R49 (2007).

    Article  CAS  Google Scholar 

  104. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Suvà, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013).

    Article  PubMed  CAS  Google Scholar 

  108. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6, 38–51 (2006).

    Article  CAS  Google Scholar 

  109. Waddington, C. H. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology (Allen & Unwin, 1957).

    Google Scholar 

  110. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Rando, O. J. & Verstrepen, K. J. Timescales of genetic and epigenetic inheritance. Cell 128, 655–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Feinberg, A. P. & Irizarry, R. A. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl Acad. Sci. USA 107 (Suppl. 1), 1757–1764 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Alvarez, H. et al. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet. 7, e1001356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shah, M. Y. et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res. 70, 5840–5850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976).

    Article  PubMed  Google Scholar 

  117. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Kaneda, A. & Feinberg, A. P. Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res. 65, 11236–11240 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Timp, W., Levchenko, A. & Feinberg, A. P. A new link between epigenetic progenitor lesions in cancer and the dynamics of signal transduction. Cell Cycle 8, 383–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Kondo, Y. & Issa, J. P. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev. 23, 29–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Issa, J. P. Aging, DNA methylation and cancer. Crit. Rev. Oncol. Hematol. 32, 31–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299, 1753–1755 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Sakatani, T. et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307, 1976–1978 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Teschendorff, A. E. & Widschwendter, M. Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions. Bioinformatics 28, 1487–1494 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Siddique, H., Zou, J. P., Rao, V. N. & Reddy, E. The BRCA2 is a histone acetyltransferase. Oncogene 16, 2283 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Fuks, F., Milner, J. & Kouzarides, T. BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene 17, 2531 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Esteve, P. O., Chin, H. G. & Pradhan, S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc. Natl Acad. Sci. USA 102, 1000–1005 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5, 455–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Campbell, P. M. & Szyf, M. Human DNA methyltransferase gene DNMT1 is regulated by the APC pathway. Carcinogenesis 24, 17–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Sun, L. et al. Phosphatidylinositol 3-kinase/protein kinase B pathway stabilizes DNA methyltransferase I protein and maintains DNA methylation. Cell. Signal. 19, 2255–2263 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Lofton-Day, C. et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54, 414–423 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Warren, J. D. et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 9, 133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zou, H. et al. Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol. Biomarkers Prev. 16, 2686–2696 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Lee, W. H. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA 91, 11733–11737 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhuang, J. et al. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genet. 8, e1002517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nature Biotech. 27, 858–863 (2009).

    Article  CAS  Google Scholar 

  138. Silber, J. R., Bobola, M. S., Blank, A. & Chamberlain, M. C. O6-Methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim. Biophys. Acta 1826, 71–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Rodriguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nature Med. 17, 330–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nature Chem. Biol. 8, 890–896 (2012).

    Article  CAS  Google Scholar 

  141. Fiskus, W. et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114, 2733–2743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Popovici-Muller, J. et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med. Chem. Lett. 3, 850–855 (2012).

    CAS  Google Scholar 

  143. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hull, M. A. Nutritional agents with anti-inflammatory properties in chemoprevention of colorectal neoplasia. Recent Results Cancer Res. 191, 143–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Kraus, S., Naumov, I. & Arber, N. COX-2 active agents in the chemoprevention of colorectal cancer. Recent Results Cancer Res. 191, 95–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Joshi, P. H. et al. A point-by-point response to recent arguments against the use of statins in primary prevention: this statement is endorsed by the American Society for Preventive Cardiology. Clin. Cardiol. 35, 404–409 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yuasa, Y. et al. Insulin-like growth factor 2 hypomethylation of blood leukocyte DNA is associated with gastric cancer risk. Int. J. Cancer 131, 2596–2603 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Kaneda, A. et al. Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc. Natl Acad. Sci. USA 104, 20926–20931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  PubMed  CAS  Google Scholar 

  150. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kanai, Y., Ushijima, S., Nakanishi, Y., Sakamoto, M. & Hirohashi, S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 192, 75–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Tefferi, A. et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23, 905–911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Langemeijer, S. M. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nature Genet. 41, 838–842 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. New Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Ward, R., Johnson, M., Shridhar, V., van Deursen, J. & Couch, F. J. CBP truncating mutations in ovarian cancer. J. Med. Genet. 42, 514–518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Kishimoto, M. et al. Mutations and deletions of the CBP gene in human lung cancer. Clin. Cancer Res. 11, 512–519 (2005).

    CAS  Google Scholar 

  160. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cromer, M. K. et al. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J. Clin. Endocrinol. Metab. 97, E1774–E1781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Bodor, C. et al. EZH2 Y641 mutations in follicular lymphoma. Leukemia 25, 726–729 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genet. 44, 694–698 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Network, T. C.G. A. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  170. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  174. Woodson, K. et al. Loss of insulin-like growth factor-II imprinting and the presence of screen-detected colorectal adenomas in women. J. Natl Cancer Inst. 96, 407–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Yun, K., Soejima, H., Merrie, A. E. H., McCall, J. L. & Reeve, A. E. Analysis of IGF2 gene imprinting in breast and colorectal cancer by allele specific-PCR. J. Pathol. 187, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Nakagawa, M. et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep. 18, 769–774 (2007).

    CAS  PubMed  Google Scholar 

  177. Choi, J. H. et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J. Cancer Res. 92, 1300–1304 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Halkidou, K. et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59, 177–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Kawai, H., Li, H., Avraham, S., Jiang, S. & Avraham, H. K. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int. J. Cancer 107, 353–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Lin, Z. et al. Combination of proteasome and HDAC inhibitors for uterine cervical cancer treatment. Clin. Cancer Res. 15, 570–577 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ozdag, H. et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7, 90 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Huang, B. H. et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 12, 395–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Wilson, A. J. et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 281, 13548–13558 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, Z. et al. HDAC6 expression is correlated with better survival in breast cancer. Clin. Cancer Res. 10, 6962–6968 (2004).

    CAS  Google Scholar 

  186. Jung-Hynes, B., Nihal, M., Zhong, W. & Ahmad, N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J. Biol. Chem. 284, 3823–3832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ashraf, N. et al. Altered sirtuin expression is associated with node-positive breast cancer. Br. J. Cancer 95, 1056–1061 (2006).

    Article  CAS  Google Scholar 

  188. Lu, P. J. et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem. 274, 15633–15645 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Silva, F. P. et al. Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells. Oncogene 27, 2686–2692 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genet. 41, 465–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Peng, D. F. et al. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis 27, 1160–1168 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Saito, Y. et al. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int. J. Cancer 105, 527–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Nakagawa, T. et al. DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis. J. Urol. 173, 1767–1771 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Agoston, A. T. et al. Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J. Biol. Chem. 280, 18302–18310 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Butcher, D. T. & Rodenhiser, D. I. Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur. J. Cancer 43, 210–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. McCarthy, H. et al. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood 101, 4903–4908 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institute of Health (NIH) grants CA05438 and HG03233 to A.P.F. The authors thank D. Singer, I. Ernberg and J. Bradner for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Feinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Bivalent modifications

Nucleosomes containing both euchromatic histone H3 lysine 4 trimethylation (H3K4me3) and heterochromatic H3K27me3 post-translational modifications.

Cancer hallmarks

Ten biological properties of cancer that are said to define the disease; we argue that they arise by natural selection for cellular survival at the expense of the host in the setting of epigenetic dysregulation and random variation.

Cancer-specific differentially methylated regions

(cDMRs). Differentially methylated regions that distinguish cancer cells from normal cells.

Chemoprevention

Administration of pharmacological compounds to reduce cancer incidence without certain knowledge of its effect on a given patient.

CpG islands

(CGIs). Areas of high CpG dinucleotide density in the genome, typically defined as a region at least 200 bp long with >50% GC dinucleotides and an observed-to-expected CpG ratio of >0.6.

CpG island shores

(CGI shores). The region 2 kb on either side of a CpG island, and the location of most cancer-specific, tissue-specific and reprogramming-specific differentially methylated regions.

Epigenetic dysregulation

The loss of normal control of DNA methylation or chromatin as a result of injury, epigenetic change or mutation, leading to phenotypic drift.

Epigenetic variability

Increased inter-sample variation in the methylation or chromatin state. This was recently identified as a common property of cancer, allowing for more accurate detection between samples.

Euchromatin

Areas of the genome that are more open to transcription owing to post-translational modifications of histones and with less nucleosome density.

Heterochromatin

Areas of the genome that are less open to transcription owing to post-translational modifications of histones and with greater nucleosome density. Facultative heterochromatin can change between the two states. Large organized chromatin lysine modifications and lamina-associated domains describe heterochromatin over relatively large regions and are associated with the nuclear membrane.

Hypomethylated blocks

Large (mean 144 kb) regions that are broadly hypomethylated in cancer and that mostly overlap with large organized chromatin lysine modifications and lamina-associated domains.

Lamina-associated domains

(LADs). Genomic regions located in the nuclear periphery that are associated with lamina (an inner nuclear membrane-associated protein) and usually have low expression levels.

Large organized chromatin lysine modifications

(LOCKs). Large heterochromatic regions characterized by low gene expression that are altered between somatic and stem cells; they are typically lost in cancer cells.

Loss of imprinting

(LOI). Loss of parent of origin-specific expression in cancer of imprinted genes, first observed for insulin-like growth factor 2 (IGF2) in Wilms' tumour and colorectal cancer.

Ornstein–Uhlenbeck process

An overdamped Brownian harmonic oscillator — that is, stochastic variation from a normal state with no persistence of the rate of change — opposed by a stronger restoring force towards the equilibrium point. We are using this to model stochastic change in DNA methylation.

Reprogramming-specific differentially methylated regions

(rDMRs). Differentially methylated regions that distinguish reprogrammed stem cells from somatic cells.

Tissue-specific differentially methylated regions

(tDMRs). Differentially methylated regions that distinguish normal tissues from each other.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timp, W., Feinberg, A. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13, 497–510 (2013). https://doi.org/10.1038/nrc3486

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3486

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer