Key Points
-
Human papillomaviruses (HPVs) are the causative agents of over 99% of cervical cancers. Cervical cancer is the second largest cause of cancer deaths in women worldwide.
-
Infection by high-risk HPV types is necessary but not sufficient for progression to cancer. Mutations in cellular genes and chromosomal rearrangements induced by genomic instabilities are important contributing events.
-
HPV E6 and E7 are the primary transforming viral proteins and E5 enhances proliferation and may contribute to cancer progression.
-
A primary target of E7 is the retinoblastoma (Rb) family of proteins that control the activity of E2F transcription factors, which are key regulators of S phase genes. Inactivation of Rb is important for the differentiation-dependent productive viral lifecycle and for tumour progression.
-
The efficient abrogation of Rb function by E7 leads to increased levels of p53 and, consequently, the E6 proteins have evolved to target p53 for degradation. E6 also activates telomerase expression and modulates the activities of PDZ domain-containing proteins and tumour necrosis factor receptors.
-
E7 proteins also alter cell cycle control through interactions with histone deacetylases, cyclins and cyclin-dependent kinase inhibitors.
-
E6 and E7 induce genomic instability through multiple mechanisms, including aberrant centrosome duplication.
-
E6 and E7 also target cytokine expression to modulate cell proliferation and interferon responses, contributing to immune evasion.
-
E5 binds to B cell receptor-associated protein 31 in the endoplasmic reticulum to control trafficking of proteins and to the vacuolar ATPase in endosomes to modulate epidermal growth factor receptor turnover and maintain constitutive signalling.
Abstract
An association between human papillomavirus (HPV) infection and the development of cervical cancer was initially reported over 30 years ago, and today there is overwhelming evidence that certain subtypes of HPV are the causative agents of these malignancies. The p53 and retinoblastoma proteins are well-characterized targets of the HPV E6 and E7 oncoproteins, but recent studies have shown that the alteration of additional pathways are equally important for transformation. These additional factors are crucial regulators of cell cycle progression, telomere maintenance, apoptosis and chromosomal stability. Understanding how HPV oncoproteins modify these activities provides novel insights into the basic mechanisms of oncogenesis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U. & zur Hausen, H. Classification of papillomaviruses. Virology 324, 17–27 (2004).
Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999). Shows that infection by high-risk HPV types is necessary for the development of cervical cancers.
Parkin, D. M. & Bray, F. Chapter 2: the burden of HPV-related cancers. Vaccine 24, (Suppl. 3), 11–25 (2006).
Duensing, S. & Munger, K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int. J. Cancer 109, 157–162 (2004).
Howley, P. M. & Lowy, D. R. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2299–2354 (Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, 2007).
Cheng, S., Schmidt-Grimminger, D. C., Murant, T., Broker, T. R. & Chow, L. T. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9, 2335–2349 (1995).
Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989). Shows that E7 binds to the retinoblastoma protein RB.
Gage, J. R., Meyers, C. & Wettstein, F. O. The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J. Virol. 64, 723–730 (1990).
Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105 (1989).
DiMaio, D. & Mattoon, D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20, 7866–7873 (2001).
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev. Cancer 2, 342–350 (2002).
Ziegert, C. et al. A comprehensive analysis of HPV integration loci in anogenital lesions combining transcript and genome-based amplification techniques. Oncogene 22, 3977–3984 (2003).
Smith, P. P., Friedman, C. L., Bryant, E. M. & McDougall, J. K. Viral integration and fragile sites in human papillomavirus-immortalized human keratinocyte cell lines. Genes Chromosom. Cancer 5, 150–157 (1992).
Stubenrauch, F., Lim, H. B. & Laimins, L. A. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J. Virol. 72, 1071–1077 (1998).
Schwarz, E. et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111–114 (1985). Shows that E6 and E7 are expressed in HPV-induced cervical cancer cells.
Baker, C. C. et al. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J. Virol. 61, 962–971 (1987).
Jeon, S., Allen-Hoffmann, B. L. & Lambert, P. F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69, 2989–2997 (1995).
Jeon, S. & Lambert, P. F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc. Natl Acad. Sci. USA 92, 1654–1658 (1995).
Thierry, F. & Yaniv, M. The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 6, 3391–3397 (1987).
Francis, D. A., Schmid, S. I. & Howley, P. M. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J. Virol. 74, 2679–2686 (2000).
Goodwin, E. C. & DiMaio, D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl Acad. Sci. USA 97, 12513–12518 (2000). References 20–22 show that introduction of high-level expression of E2 into cervical cancer cells results in transcriptional repression of the E6 and E7 early genes and suppression of cell growth.
Kadaja, M., Isok-Paas, H., Laos, T., Ustav, E. & Ustav, M. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog. 5, e1000397 (2009).
McLaughlin-Drubin, M. E. & Munger, K. Oncogenic activities of human papillomaviruses. Virus Res. 143, 195–208 (2009).
McLaughlin-Drubin, M. E. & Munger, K. The human papillomavirus E7 oncoprotein. Virology 384, 335–344 (2009).
Howie, H. L., Katzenellenbogen, R. A. & Galloway, D. A. Papillomavirus E6 proteins. Virology 384, 324–334 (2009).
Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. & Schiller, J. T. HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905–3910 (1989).
Munger, K., Phelps, W. C., Bubb, V., Howley, P. M. & Schlegel, R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63, 4417–4421 (1989).
McCance, D. J., Kopan, R., Fuchs, E. & Laimins, L. A. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc. Natl Acad. Sci. USA 85, 7169–7173 (1988). Shows that expression of HPV 16 proteins induces histological changes in tissue culture models that are identical to those seen in HPV-induced cervical lesions in vivo.
Arbeit, J. M., Howley, P. M. & Hanahan, D. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc. Natl Acad. Sci. USA 93, 2930–2935 (1996).
Riley, R. R. et al. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 63, 4862–4871 (2003).
Kaur, P. & McDougall, J. K. Characterization of primary human keratinocytes transformed by human papillomavirus type 18. J. Virol. 62, 1917–1924 (1988).
Durst, M., Gallahan, D., Jay, G. & Rhim, J. S. Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 173, 767–771 (1989).
Pei, X. F., Meck, J. M., Greenhalgh, D. & Schlegel, R. Cotransfection of HPV-18 and v-fos DNA induces tumorigenicity of primary human keratinocytes. Virology 196, 855–860 (1993).
Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).
Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19, 111–118 (2009).
DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).
Harbour, J. W. & Dean, D. C. Chromatin remodeling and Rb activity. Curr. Opin. Cell Biol. 12, 685–689 (2000).
Stevaux, O. & Dyson, N. J. A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 14, 684–691 (2002).
Chellappan, S. et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl Acad. Sci. USA 89, 4549–4553 (1992).
Zerfass, K. et al. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J. Virol. 69, 6389–6399 (1995).
Hwang, S. G., Lee, D., Kim, J., Seo, T. & Choe, J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277, 2923–2930 (2002).
Longworth, M. S. & Laimins, L. A. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J. Virol. 78, 3533–3541 (2004).
Brehm, A. et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449–2458 (1999).
McLaughlin-Drubin, M. E., Huh, K. W. & Munger, K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J. Virol. 82, 8695–8705 (2008).
Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).
Longworth, M. S., Wilson, R. & Laimins, L. A. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J. 24, 1821–1830 (2005).
Boyer, S. N., Wazer, D. E. & Band, V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56, 4620–4624 (1996).
Jones, D. L., Thompson, D. A. & Munger, K. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239, 97–107 (1997). Shows that E7 destabilizes RB and leads to stabilization of p53.
Shin, M. K., Balsitis, S., Brake, T. & Lambert, P. F. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res. 69, 5656–5663 (2009).
Deshpande, A., Sicinski, P. & Hinds, P. W. Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909–2915 (2005).
Jones, D. L., Alani, R. M. & Munger, K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11, 2101–2111 (1997).
Zerfass-Thome, K. et al. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13, 2323–2330 (1996).
Funk, J. O. et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11, 2090–2100 (1997).
He, W., Staples, D., Smith, C. & Fisher, C. Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J. Virol. 77, 10566–10574 (2003).
Nguyen, C. L. & Munger, K. Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes. Virology 380, 21–25 (2008).
Katich, S. C., Zerfass-Thome, K. & Hoffmann, I. Regulation of the Cdc25A gene by the human papillomavirus type 16 E7 oncogene. Oncogene 20, 543–550 (2001).
Nguyen, D. X., Westbrook, T. F. & McCance, D. J. Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J. Virol. 76, 619–632 (2002).
Blomberg, I. & Hoffmann, I. Ectopic expression of Cdc25A accelerates the G1/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell. Biol. 19, 6183–6194 (1999).
Demers, G. W., Halbert, C. L. & Galloway, D. A. Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology 198, 169–174 (1994).
Eichten, A. et al. Molecular pathways executing the “trophic sentinel” response in HPV-16 E7-expressing normal human diploid fibroblasts upon growth factor deprivation. Virology 319, 81–93 (2004).
Huibregtse, J. M., Scheffner, M. & Howley, P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10, 4129–4135 (1991).
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).
Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993). Shows that high-risk E6 forms a complex with E6AP and p53 to promote p53 ubiquitylation and degradation.
Lechner, M. S. & Laimins, L. A. Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J. Virol. 68, 4262–4273 (1994).
Brimer, N., Lyons, C. & Vande Pol, S. B. Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. Virology 358, 303–310 (2007).
Li, X. & Coffino, P. High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J. Virol. 70, 4509–4516 (1996).
Patel, D., Huang, S. M., Baglia, L. A. & McCance, D. J. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18, 5061–5072 (1999).
Zimmermann, H., Degenkolbe, R., Bernard, H. U. & O'Connor, M. J. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73, 6209–6219 (1999).
Kumar, A. et al. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol. Cell. Biol. 22, 5801–5812 (2002).
Crook, T., Fisher, C., Masterson, P. J. & Vousden, K. H. Modulation of transcriptional regulatory properties of p53 by HPV E6. Oncogene 9, 1225–1230 (1994).
Marin, M. C. et al. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18, 6316–6324 (1998).
Roth, J. & Dobbelstein, M. Failure of viral oncoproteins to target the p53-homologue p51A. J. Gen. Virol. 80, 3251–3255 (1999).
Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).
Liu, Y. et al. Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J. Virol. 73, 7297–7307 (1999).
Thomas, M. et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene 27, 7018–7030 (2008).
Lee, C., Wooldridge, T. R. & Laimins, L. A. Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle. Virology 358, 201–210 (2007).
Nguyen, M. L., Nguyen, M. M., Lee, D., Griep, A. E. & Lambert, P. F. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6's induction of epithelial hyperplasia in vivo. J. Virol. 77, 6957–6964 (2003).
Artandi, S. E. & DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis 31, 9–18.
Wise-Draper, T. M. & Wells, S. I. Papillomavirus E6 and E7 proteins and their cellular targets. Front. Biosci. 13, 1003–1017 (2008).
Katzenellenbogen, R. A. et al. NFX1–123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J. Virol. 81, 3786–3796 (2007).
Stoppler, H., Hartmann, D. P., Sherman, L. & Schlegel, R. The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem. 272, 13332–13337 (1997).
Zhang, A. et al. Telomere attrition predominantly occurs in precursor lesions during in vivo carcinogenic process of the uterine cervix. Oncogene 23, 7441–7447 (2004).
Spardy, N., Duensing, A., Hoskins, E. E., Wells, S. I. & Duensing, S. HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res. 68, 9954–9963 (2008).
Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007).
White, A. E., Livanos, E. M. & Tlsty, T. D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666–677 (1994).
zur Hausen, H. Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin. Cancer Biol. 9, 405–411 (1999).
Duensing, S., Duensing, A., Crum, C. P. & Munger, K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61, 2356–2360 (2001). Shows that E7 induces abnormal centrosome synthesis, leading to genomic instability.
Bibbo, M., Dytch, H. E., Alenghat, E., Bartels, P. H. & Wied, G. L. DNA ploidy profiles as prognostic indicators in CIN lesions. Am. J. Clin. Pathol. 92, 261–265 (1989).
Steinbeck, R. G. Proliferation and DNA aneuploidy in mild dysplasia imply early steps of cervical carcinogenesis. Acta Oncol. 36, 3–12 (1997).
Rihet, S., Lorenzato, M. & Clavel, C. Oncogenic human papillomaviruses and ploidy in cervical lesions. J. Clin. Pathol. 49, 892–896 (1996).
Duensing, A. et al. Centrosome overduplication, chromosomal instability, and human papillomavirus oncoproteins. Environ. Mol. Mutagen. 50, 741–747 (2009).
Winkler, B. et al. Koilocytotic lesions of the cervix. The relationship of mitotic abnormalities to the presence of papillomavirus antigens and nuclear DNA content. Cancer 53, 1081–1087 (1984).
Duensing, S. et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl Acad. Sci. USA 97, 10002–10007 (2000).
Duensing, A. et al. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26, 6280–6288 (2007).
Duensing, A. et al. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25, 2943–2949 (2006).
Duensing, S. & Munger, K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77, 12331–12335 (2003).
Nguyen, C. L., Eichwald, C., Nibert, M. L. & Munger, K. Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component γ-tubulin. J. Virol. 81, 13533–13543 (2007).
Patel, D., Incassati, A., Wang, N. & McCance, D. J. Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2–M-phase proteins. Cancer Res. 64, 1299–1306 (2004).
Finzer, P., Aguilar-Lemarroy, A. & Rosl, F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett. 188, 15–24 (2002).
Thompson, D. A. et al. The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15, 3025–3035 (1997).
Thomas, J. T. & Laimins, L. A. Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J. Virol. 72, 1131–1137 (1998).
Duensing, S. & Munger, K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62, 7075–7082 (2002).
Kessis, T. D., Connolly, D. C., Hedrick, L. & Cho, K. R. Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13, 427–431 (1996).
Moody, C. A. & Laimins, L. A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 5, e1000605 (2009). Shows that E6 and E7 activate the ATM DNA damage response and that this is important for productive replication in differentiating cells.
Spardy, N. et al. Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res. 69, 7022–7029 (2009).
Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).
Kutler, D. I. et al. Human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia patients. J. Natl Cancer Inst. 95, 1718–1721 (2003).
Spardy, N. et al. The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J. Virol. 81, 13265–13270 (2007).
Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).
Moody, C. A., Fradet-Turcotte, A., Archambault, J. & Laimins, L. A. Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc. Natl Acad. Sci. USA 104, 19541–19546 (2007).
Chiarugi, P. & Giannoni, E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem. Pharmacol. 76, 1352–1364 (2008).
McCormack, S. J., Brazinski, S. E., Moore, J. L. Jr, Werness, B. A. & Goldstein, D. J. Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 15, 265–274 (1997).
Tong, X. & Howley, P. M. The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc. Natl Acad. Sci. USA 94, 4412–4417 (1997).
Vande Pol, S. B., Brown, M. C. & Turner, C. E. Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 16, 43–52 (1998).
Du, M., Fan, X., Hong, E. & Chen, J. J. Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem. Biophys. Res. Commun. 296, 962–969 (2002).
Huh, K. W. et al. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl Acad. Sci. USA 102, 11492–11497 (2005).
Basile, J. R., Zacny, V. & Munger, K. The cytokines tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J. Biol. Chem. 276, 22522–22528 (2001).
Filippova, M., Song, H., Connolly, J. L., Dermody, T. S. & Duerksen-Hughes, P. J. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J. Biol. Chem. 277, 21730–21739 (2002).
Filippova, M., Parkhurst, L. & Duerksen-Hughes, P. J. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J. Biol. Chem. 279, 25729–25744 (2004).
Garnett, T. O., Filippova, M. & Duerksen-Hughes, P. J. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ. 13, 1915–1926 (2006).
Garnett, T. O. & Duerksen-Hughes, P. J. Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch. Virol. 151, 2321–2335 (2006).
Beglin, M., Melar-New, M. & Laimins, L. Human papillomaviruses and the interferon response. J. Interferon Cytokine Res. 29, 629–635 (2009).
Chang, Y. E. & Laimins, L. A. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J. Virol. 74, 4174–4182 (2000).
Ronco, L. V., Karpova, A. Y., Vidal, M. & Howley, P. M. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 12, 2061–2072 (1998).
Park, J. S. et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275, 6764–6769 (2000).
Barnard, P. & McMillan, N. A. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-α. Virology 259, 305–313 (1999).
Hebner, C. M., Wilson, R., Rader, J., Bidder, M. & Laimins, L. A. Human papillomaviruses target the double-stranded RNA protein kinase pathway. J. Gen. Virol. 87, 3183–3193 (2006).
Kazemi, S. et al. Control of α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2α-dependent gene expression and cell death. Mol. Cell. Biol. 24, 3415–3429 (2004).
Hebner, C., Beglin, M. & Laimins, L. A. Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation. J. Virol. 81, 12740–12747 (2007).
Conrad, M., Bubb, V. J. & Schlegel, R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J. Virol. 67, 6170–6178 (1993).
Disbrow, G. L., Hanover, J. A. & Schlegel, R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J. Virol. 79, 5839–5846 (2005).
Disbrow, G. L., Sunitha, I., Baker, C. C., Hanover, J. & Schlegel, R. Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology 311, 105–114 (2003).
Petti, L., Nilson, L. A. & DiMaio, D. Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 10, 845–855 (1991).
Bouvard, V., Matlashewski, G., Gu, Z. M., Storey, A. & Banks, L. The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 203, 73–80 (1994).
Valle, G. F. & Banks, L. The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J. Gen. Virol. 76, 1239–1245 (1995).
Stoppler, M. C., Straight, S. W., Tsao, G., Schlegel, R. & McCance, D. J. The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223, 251–254 (1996).
Maufort, J. P., Williams, S. M., Pitot, H. C. & Lambert, P. F. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res. 67, 6106–6112 (2007).
Maufort, J. P., Shai, A., Pitot, H. C. & Lambert, P. F. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res. 70, 2924–2931 (2010).
Arias-Pulido, H., Peyton, C. L., Joste, N. E., Vargas, H. & Wheeler, C. M. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J. Clin. Microbiol. 44, 1755–1762 (2006).
Chang, J. L. et al. The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J. Biomed. Sci. 8, 206–213 (2001).
Kristiansen, E., Jenkins, A. & Holm, R. Coexistence of episomal and integrated HPV16 DNA in squamous cell carcinoma of the cervix. J. Clin. Pathol. 47, 253–256 (1994).
Regan, J. A. & Laimins, L. A. Bap31 is a novel target of the human papillomavirus E5 protein. J. Virol. 82, 10042–10051 (2008).
Leechanachai, P., Banks, L., Moreau, F. & Matlashewski, G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7, 19–25 (1992).
Straight, S. W., Herman, B. & McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192 (1995).
Ashrafi, G. H., Haghshenas, M., Marchetti, B. & Campo, M. S. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer 119, 2105–2112 (2006).
Gu, Z. & Matlashewski, G. Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J. Virol. 69, 8051–8056 (1995).
Suprynowicz, F. A. et al. HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene 27, 1071–1078 (2008).
Harper, D. M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255 (2006).
Acknowledgements
L.A.L. is supported by grants from the National Cancer Institute and the National Institute for Allergy and Infectious Diseases. C.A.M. is supported by a K99 Pathway to Independence Award from the National Cancer Institute. We thank K. Simanis for assistance with the figures.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Papanicolau smear
-
A method used to screen for the cellular changes that accompany HPV infection and used as a diagnostic for HPV-induced disease.
- Episome
-
An extrachromosomal DNA element such as a plasmid that can replicate independently from host chromosomal DNA.
- Organotypic raft culture
-
An in vitro method for growing keratinocytes at an air–liquid interphase that faithfully duplicates in vivo epithelial differentiation.
- HECT family
-
A group of related E3 ubiquitin protein ligases that contain a conserved C-terminal 350 amino acid long homologous to the E6 C-terminus (HECT) domain that is involved in ubiquitylation of bound substrates.
- Telomere
-
A double-stranded short tandem repeat found at the ends of chromosomes that consists of the sequence TTAGGG and is approximately 10–15 kb in length. Telomeres provide a cap for linear chromosomes and are important in maintaining genomic stability.
- Telomerase reverse transcriptase
-
The catalytic protein subunit of telomerase, an RNA-dependent DNA polymerase that synthesizes telomere repeats at chromosomal ends.
- Centrosome
-
The primary microtubule-organizing centre of human cells, which consists of a pair of centrioles. Centrosomes are duplicated only once before mitosis and are responsible for proper chromosome segregation during cell division.
- ATM–ATR pathway
-
This involves phosphoinositide 3-like kinases important in sensing and repairing DNA damage. ATM is activated in response to double-stranded breaks and ATR is induced on the appearance of single-stranded lesions.
- Fanconi anaemia
-
A rare disease characterized by chromosomal instability and a high incidence of squamous cell carcinomas of the head, neck and anogenital regions.
- Anoikis
-
A form of programmed cell death that is activated when normal cells attempt to divide in the absence of attachment to the extracellular matrix.
Rights and permissions
About this article
Cite this article
Moody, C., Laimins, L. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10, 550–560 (2010). https://doi.org/10.1038/nrc2886
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrc2886
This article is cited by
-
Accuracy of HPV E6/E7 oncoprotein tests to detect high-grade cervical lesions: a systematic literature review and meta-analysis
British Journal of Cancer (2024)
-
Activating STING/TBK1 suppresses tumor growth via degrading HPV16/18 E7 oncoproteins in cervical cancer
Cell Death & Differentiation (2024)
-
A review on the nanotechnology-based approaches for managing sexually transmitted infections
Journal of Pharmaceutical Investigation (2024)
-
Epidemiologie und Prävention des Oropharynxkarzinoms
Die Onkologie (2024)
-
HPV-positive murine oral squamous cell carcinoma: development and characterization of a new mouse tumor model for immunological studies
Journal of Translational Medicine (2023)