Abstract
Cervical cancer is the leading cause of cancer death for women in developing countries. Optical technologies can improve the accuracy and availability of cervical cancer screening. For example, battery-powered digital cameras can obtain multi-spectral images of the entire cervix, highlighting suspicious areas, and high-resolution optical technologies can further interrogate such areas, providing in vivo diagnosis with high sensitivity and specificity. In addition, targeted contrast agents can highlight changes in biomarkers of cervical neoplasia. Such advances should provide a much needed global approach to cervical cancer prevention.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).
Koss, L. G. The Papanicolaou test for cervical cancer detection. A triumph and a tragedy. JAMA 261, 737–743 (1989).
Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).
Cohen, J. Public health. High hopes and dilemmas for a cervical cancer vaccine. Science 308, 618–621 (2005).
Agosti, J. M. & Goldie, S. J. Introducing HPV vaccine in developing countries — key challenges and issues. N. Engl. J. Med. 356, 1908–1910 (2007).
Mitchell, M. F., Schottenfeld, D., Tortolero-Luna, G., Cantor, S. B. & Richards-Kortum, R. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. Obstet. Gynecol. 91, 626–631 (1998).
Goldie, S. J. et al. Cost-effectiveness of cervical-cancer screening in five developing countries. N. Engl. J. Med. 353, 2158–2168 (2005).
Sankaranarayanan, R. et al. Visual inspection of the uterine cervix after the application of acetic acid in the detection of cervical carcinoma and its precursors. Cancer 83, 2150–2156 (1998).
Sankaranarayanan, R. et al. Effect of visual screening on cervical cancer incidence and mortality in Tamil Nadu, India: a cluster-randomised trial. Lancet 370, 398–406 (2007).
Jeronimo, J. et al. Visual inspection with acetic acid for cervical cancer screening outside of low-resource settings. Rev. Panam. Salud Publica 17, 1–5 (2005).
Sankaranarayanan, R., Gaffikin, L., Jacob, M., Sellors, J. & Robles, S. A critical assessment of screening methods for cervical neoplasia. Int. J. Gynecol. Obstet. 89 (Suppl. 2), S4–S12 (2005).
Sankaranarayanan, R. et al. The role of low-level magnification in visual inspection with acetic acid for the early detection of cervical neoplasia. Cancer Detect Prev. 28, 345–351 (2004).
Denny, L., Kuhn, L., Pollack, A. & Wright, T. C. Jr. Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance. Cancer 94, 1699–1707 (2002).
Thekkek, N., Martinez, J., Follen, M. & Richards-Kortum, R. Digital imaging aid for the early detection of cervical cancer in low resource settings. Biomed. Eng. Soc. 2007 Annu. Fall Meet. (Los Angeles, California, 2007).
Park, S. Y. et al. Automated image analysis of digital colposcopy for the detection of cervical intraepithelial neoplasia. J. Biomed. Opt. 13, 014029 (2008).
Cristoforoni, P. M. et al. Computerized colposcopy: results of a pilot study and analysis of its clinical relevance. Obstet. Gynecol. 85, 1011–1016 (1995).
Mikhail, M. S., Palan, P. R., Basu, J. & Romney, S. L. Computerized measurement of intercapillary distance using image analysis in women with cervical intraepithelial neoplasia: correlation with severity. Acta Obstet. Gynecol. Scand. 83, 308–310 (2004).
Drezek, R. A. et al. Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Amer. J. Obstet. Gynecol. 182, 1135–1139 (2000).
Skala, M. C. et al. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res. 65, 1180–1186 (2005).
Pavlova, I. et al. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem. Photobiol. 77, 550–555 (2003).
Brookner, C. K. et al. Autofluorescence patterns in short-term cultures of normal cervical tissue. Photochem. Photobiol. 71, 730–736 (2000).
Gulledge, C. J. & Dewhirst, M. W. Tumor oxygenation: a matter of supply and demand. Anticancer Res. 16, 741–749 (1996).
Smith-McCune, K. K. & Weidner, N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res. 54, 800–804 (1994).
Guidi, A. J. et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J. Natl Cancer Inst. 87, 1237–1245 (1995).
Davidson, B. et al. Expression of matrix metalloproteinase-9 in squamous cell carcinoma of the uterine cervix-clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol. Oncol. 72, 380–386 (1999).
Triratanachat, S., Niruthisard, S., Trivijitsilp, P., Tresukosol, D. & Jarurak, N. Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance. Int. J. Gynecol. Cancer 16, 575–580 (2006).
Zuluaga, A. F. et al. Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension. J. Biomed. Opt. 7, 398–403 (2002).
Collier, T., Follen, M., Malpica, A. & Richards-Kortum, R. Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy. Appl. Opt. 44, 2072–2081 (2005).
Collier, T., Guillaud, M., Follen, M., Malpica, A. & Richards-Kortum, R. Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer. J. Biomed. Opt. 12, 024021 (2007).
Drezek, R. et al. Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. J. Biomed. Opt. 8, 7–16 (2003).
Arifler, D. et al. Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition. J. Biomed. Opt. 8, 484–494 (2003).
Arifler, D., MacAulay, C., Follen, M. & Richards-Kortum, R. Spatially resolved reflectance spectroscopy for diagnosis of cervical pre-cancer: Monte Carlo modeling and comparison to clinical measurements. J. Biomed. Opt. 11, 064027 (2006).
Drezek, R. et al. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem. Photobiol. 73, 636–641 (2001).
Lohmann, W., Mussmann, J., Lohmann, C. & Kunzel, W. Native fluorescence of unstained cryo-sections of the cervix uteri compared with histological observations. Naturwissenschaften 76, 125–127 (1989).
Mujat, C. et al. Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells. Int. J. Cancer 122, 363–371 (2008).
DaCosta, R. S., Wilson, B. C. & Marcon, N. E. Fluorescence and spectral imaging. ScientificWorldJournal 7, 2046–2071 (2007).
Perelman, L. T. Optical diagnostic technology based on light scattering spectroscopy for early cancer detection. Expert Rev. Med. Devices 3, 787–803 (2006).
Ramanujam, N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2, 89–117 (2000).
Balas, C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans. Biomed. Eng. 48, 96–104 (2001).
Pogue, B. W. et al. Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions. J. Biomed. Opt. 6, 397–403 (2001).
Orfanoudaki, I. M. et al. A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system. Gynecol. Oncol. 96, 119–131 (2005).
Benavides, J. M. et al. Multispectral digital colposcopy for in vivo detection of cervical cancer. Opt. Express 11, 1223–1236 (2003).
Milbourne, A. et al. Results of a pilot study of multispectral digital colposcopy for the in vivo detection of cervical intraepithelial neoplasia. Gynecol. Oncol. 99, S67–75 (2005).
Huh, W. K. et al. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study. Am. J. Obstet. Gynecol. 190, 1249–1257 (2004).
Alvarez, R. D. & Wright, T. C. Effective cervical neoplasia detection with a novel optical detection system: a randomized trial. Gynecol. Oncol. 104, 281–289 (2007).
Ferris, D. G. et al. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J. Low. Genit. Tract Dis. 5, 65–72 (2001).
DeSantis, T. et al. Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial. J. Low. Genit. Tract Dis. 11, 18–24 (2007).
Alvarez, R. D. & Wright, T. C. Jr. Increased detection of high-grade cervical intraepithelial neoplasia utilizing an optical detection system as an adjunct to colposcopy. Gynecol. Oncol. 106, 23–28 (2007).
Kendrick, J. E., Huh, W. K. & Alvarez, R. D. LUMA cervical imaging system. Expert Rev. Med. Devices 4, 121–129 (2007).
Mirabal, Y. N. et al. Reflectance spectroscopy for in vivo detection of cervical precancer. J. Biomed. Opt. 7, 587–594 (2002).
Chang, S. K. et al. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J. Biomed. Opt. 10, 024031 (2005).
Georgakoudi, I. et al. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am. J. Obstet. Gynecol. 186, 374–382 (2002).
Mourant, J. R. et al. In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol. Oncol. 105, 439–445 (2007).
Wang, A., Nammalavar, V. & Drezek, R. Targeting spectral signatures of progressively dysplastic stratified epithelia using angularly variable fiber geometry in reflectance Monte Carlo simulations. J. Biomed. Opt. 12, 044012 (2007).
Arifler, D., Schwarz, R. A., Chang, S. K. & Richards-Kortum, R. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma. Appl. Opt. 44, 4291–4305 (2005).
Ramanujam, N. et al. Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN). Gynecol. Oncol. 52, 31–38 (1994).
Ramanujam, N. et al. Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths. Photochem. Photobiol. 64, 720–735 (1996).
Chang, S. K. et al. Optimal excitation wavelengths for discrimination of cervical neoplasia. IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
Weingandt, H. et al. Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia. Br. J. Obstet. Gynecol. 109, 947–951 (2002).
Drezek, R. et al. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J. Biomed. Opt. 6, 385–396 (2001).
Chang, S. K., Arifler, D., Drezek, R., Follen, M. & Richards-Kortum, R. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements. J. Biomed. Opt. 9, 511–522 (2004).
Georgakoudi, I. et al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62, 682–687 (2002).
Brookner, C. K., Utzinger, U., Staerkel, G., Richards-Kortum, R. & Mitchell, M. F. Cervical fluorescence of normal women. Lasers Surg. Med. 24, 29–37 (1999).
Nordstrom, R. J., Burke, L., Niloff, J. M. & Myrtle, J. F. Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg. Med. 29, 118–127 (2001).
Pavlova, I., Williams, M., El-Naggar, A., Richards-Kortum, R. & Gillenwater, A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: High resolution fluorescence microscopy in viable tissue. Clin. Cancer Res. 8, 2396–2404 (2008).
Collier, T., Lacy, A., Richards-Kortum, R., Malpica, A. & Follen, M. Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue. Acad. Radiol. 9, 504–512 (2002).
Evans, J. A. & Nishioka, N. S. Endoscopic confocal microscopy. Curr. Opin. Gastroenterol. 21, 578–584 (2005).
MacAulay, C., Lane, P. & Richards-Kortum, R. In vivo pathology: microendoscopy as a new endoscopic imaging modality. Gastrointest. Endosc. Clin. N. Am. 14, 595–620, xi (2004).
Collier, T., Shen, P., de Pradier, B. & Richards-Kortum, R. Near real time confocal microscopy of amelanotic tissue: dynamics of aceto-whitening enable nuclear segmentation. Opt. Express 6, 40–48 (2000).
Luck, B. L., Carlson, K. D., Bovik, A. C. & Richards-Kortum, R. R. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue. IEEE Trans. Image Process. 14, 1265–1276 (2005).
Sung, K. B. et al. Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved. J. Microsc. 207 (Pt 2), 137–145 (2002).
Tan, J., Delaney, P. & McLaren, W. J. Confocal endomicroscopy: a novel imaging technique for in vivo histology of cervical intraepithelial neoplasia. Expert Rev. Med. Devices 4, 863–871 (2007).
Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).
Sokolov, K. et al. Optical systems for in vivo molecular imaging of cancer. Technol. Cancer Res. Treat 2, 491–504 (2003).
Hsiung, P. L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Med. 14, 454–458 (2008).
Koyama, Y. et al. In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 9, 1021–1029 (2007).
Adams, K. E. et al. Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J. Biomed. Opt. 12, 024017 (2007).
Aaron, J. et al. Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J. Biomed. Opt. 12 (2007).
Sokolov, K. et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2003).
Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46 (2003).
Nida, D. L., Rahman, M. S., Carlson, K. D., Richards-Kortum, R. & Follen, M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol. Oncol. 99, S89–S94 (2005).
Cuenca, A. G. et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459–466 (2006).
Chang, E., Thekkek, N., Yu, W. W., Colvin, V. L. & Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2, 1412–1417 (2006).
Nitin, N., Javier, D. J., Roblyer, D. M. & Richards-Kortum, R. Widefield and high-resolution reflectance imaging of gold and silver nanospheres. J. Biomed. Opt. 12, 051505 (2007).
Aslan, K., Zhang, J., Lakowicz, J. R. & Geddes, C. D. Saccharide sensing using gold and silver nanoparticles — a review. J. Fluoresc. 14, 391–400 (2004).
Vizcaino, A. P. et al. International trends in incidence of cervical cancer: II. Squamous-cell carcinoma. Int. J. Cancer 86, 429–435 (2000).
Roblyer, D., Richards-Kortum, R., Park, S. Y., Adewole, I. & Follen, M. Objective screening for cervical cancer in developing nations: lessons from Nigeria. Gynecol. Oncol. 107, S94–97 (2007).
Muldoon, T. et al. High resolution imaging in Barrett's esophagus: a novel, low-cost endoscopic microscope. Gastrointest. Endosc. (in the press).
Visual inspection with acetic acid for cervical-cancer screening: test qualities in a primary-care setting. University of Zimbabwe/JHPIEGO Cervical Cancer Project. Lancet 353, 869–873 (1999).
Denny, L., Kuhn, L., Pollack, A., Wainwright, H. & Wright, T. C. Jr. Evaluation of alternative methods of cervical cancer screening for resource-poor settings. Cancer 89, 826–833 (2000).
Belinson, J. L. et al. Cervical cancer screening by simple visual inspection after acetic acid. Obstet. Gynecol. 98, 441–444 (2001).
Cronje, H. S. et al. A comparison of four screening methods for cervical neoplasia in a developing country. Am. J. Obstet. Gynecol. 188, 395–400 (2003).
Sankaranarayanan, R. et al. Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa. Int. J. Cancer 110, 907–913 (2004).
Acknowledgements
The authors would like to acknowledge the support of a National Institutes of Health Bioengineering Research Partnerships grant (CA103830).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
R. R.-K. has an ownership stake in Remicalm, Inc. and serves as an unpaid member of its Scientific Advisory Board.
Related links
Related links
DATABASES
National Cancer Institute
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Thekkek, N., Richards-Kortum, R. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer 8, 725–731 (2008). https://doi.org/10.1038/nrc2462
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrc2462