[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer genetics and drug discovery in the zebrafish

Abstract

Fish have a long history of use in cancer toxicology studies, because they develop neoplasms that are histologically similar to human cancers. Because of considerable progress in zebrafish genetics and genomics over the past few years, the zebrafish system has provided many useful tools for studying basic biological processes. These tools include forward genetic screens, transgenic models, specific gene disruptions and small-molecule screens. By combining carcinogenesis assays, genetic analyses and small-molecule screening techniques, the zebrafish is emerging as a powerful system for identifying novel cancer genes and for cancer drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Attributes of the zebrafish system that will impact on the study of cancer biology.
Figure 2: Adenocarcinoma of the pancreas in zebrafish and humans.
Figure 3: Examples of embryonic assays that probe cancer pathways in the zebrafish.
Figure 4: Schematic of a small-molecule screen.

Similar content being viewed by others

References

  1. Detrich, H. W., Westerfield, M. & Zon, L. I. Overview of the Zebrafish system. Methods Cell Biol. 59, 3–10 (1999).

    Article  CAS  Google Scholar 

  2. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291, 293–296 (1981).

    Article  CAS  Google Scholar 

  3. Grunwald, D. J. & Streisinger, G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet. Res. 59, 103–116 (1992).

    Article  CAS  Google Scholar 

  4. Driever, W. & Fishman, M. C. The zebrafish: heritable disorders in transparent embryos. J. Clin. Invest. 97, 1788–1794 (1996).

    Article  CAS  Google Scholar 

  5. Eisen, J. S. Zebrafish make a big splash. Cell 87, 969–977 (1996).

    Article  CAS  Google Scholar 

  6. Dooley, K. & Zon, L. I. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10, 252–256 (2000).

    Article  CAS  Google Scholar 

  7. Penberthy, W. T., Shafizadeh, E. & Lin, S. The zebrafish as a model for human disease. Front. Biosci. 7, d1439–d1453 (2002).

    Article  Google Scholar 

  8. Taft, W. H. Cancer in Fishes House document no. 848, 61st Congress, 2nd session, 1–3 (US House of Representatives, Washington DC, 1910).

    Google Scholar 

  9. Rettig, R. A. in Cancer Crusade: The Story of the National Cancer Act of 1971 42–76 (Joseph Henry Press, Washington DC, 2000).

    Google Scholar 

  10. Gordon, M. Hereditary basis of melanosis in hybrid fishes. Am. J. Cancer 15, 1495–1523 (1931).

    Google Scholar 

  11. Walter, R. B. & Kazianis, S. Xiphophorus interspecies hybrids as genetic models of induced neoplasia. Ilar J. 42, 299–321 (2001).

    Article  CAS  Google Scholar 

  12. Law, J. M. Mechanistic considerations in small fish carcinogenicity testing. Ilar J. 42, 274–284 (2001).

    Article  CAS  Google Scholar 

  13. Stanton, M. Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, Brachydanio rerio. J. Natl Cancer Inst. 34, 117–130 (1965).

    Article  CAS  Google Scholar 

  14. Bunton, T. E. Experimental chemical carcinogenesis in fish. Toxicol. Pathol. 24, 603–618 (1996).

    Article  CAS  Google Scholar 

  15. Bunton, T. E. Hepatopathology of diethylnitrosamine in the medaka (Oryzias latipes) following short-term exposure. Toxicol. Pathol. 18, 313–323 (1990).

    Article  CAS  Google Scholar 

  16. Hendricks, J. D. Development of the Zebra Danio model: Carcinogenesis and Gene Transfer Studies (US Army, National Information Technology Service, Springfield, Virginia, 1996).

    Google Scholar 

  17. Tsai, H. W. Evolution of Zebrafish (Danio rerio) as a Model for Carcinogenesis. Ph.D. Thesis, Oregon State Univ., 1996.

  18. Spitsbergen, J. M. & Kent, M. L. The state of the art of the zebrafish model for toxicology and toxicologic pathology research — advantages and current limitations. Toxicol. Pathol. 31 (Suppl), 62–87 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Streisinger, G. Attainment of minimal biological variability and measurements of genotoxicity: production of homozygous diploid zebra fish. Natl Cancer Inst. Monogr. 65, 53–58 (1984).

    CAS  PubMed  Google Scholar 

  20. Spitsbergen, J. M. et al. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol. Pathol. 28, 716–725 (2000).

    Article  CAS  Google Scholar 

  21. Spitsbergen, J. M. et al. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenza[a]anthracene by two exposure routes at different developmental stages. Toxicol. Pathol. 28, 705–715 (2000).

    Article  CAS  Google Scholar 

  22. Beckwith, L. G., Moore, J. L., Tsao-Wu, G. S., Harshbarger, J. C. & Cheng, K. C. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab. Invest. 80, 379–385 (2000).

    Article  CAS  Google Scholar 

  23. Tsao-Wu, G. S., Weber, C. H., Budgeon, L. R. & Cheng, K. C. Agarose-embedded tissue arrays for histologic and genetic analysis. Biotechniques 25, 614–618 (1998).

    Article  CAS  Google Scholar 

  24. Moore, J. L., Aros, M., Steudel, K. G. & Cheng, K. C. Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis. Biotechniques 32, 296–298 (2002).

    Article  CAS  Google Scholar 

  25. Spitsbergen, J. M. & Wolfe, M. J. The riddle of hepatic neoplasia in brown bullheads from relatively unpolluted waters in New York State. Toxicol. Pathol. 23, 716–725 (1995).

    Article  CAS  Google Scholar 

  26. Okihiro, M. S. & Hinton, D. E. Progression of hepatic neoplasia in medaka (Oryzias latipes) exposed to diethylnitrosamine. Carcinogenesis 20, 933–940 (1999).

    Article  CAS  Google Scholar 

  27. Langheinrich, U., Hennen, E., Stott, G. & Vacun, G. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr. Biol. 12, 2023–2028 (2002).

    Article  CAS  Google Scholar 

  28. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  29. Bailey, G. S., Williams, D. E. & Hendricks, J. D. Fish models for environmental carcinogenesis: the rainbow trout. Environ. Health Perspect. 104 (Suppl. 1), 5–21 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang, Y. J. et al. Analysis of ras gene mutations in rainbow trout liver tumors initiated by aflatoxin B1. Mol. Carcinog. 4, 112–119 (1991).

    Article  CAS  Google Scholar 

  31. Fong, A. T. et al. Carcinogenicity, metabolism and Ki-ras proto-oncogene activation by 7,12-dimethylbenz[a]anthracene in rainbow trout embryos. Carcinogenesis 14, 629–635 (1993).

    Article  CAS  Google Scholar 

  32. Hendricks, J. D., Cheng, R., Shelton, D. W., Pereira, C. B. & Bailey, G. S. Dose-dependent carcinogenicity and frequent Ki-ras proto-oncogene activation by dietary N-nitrosodiethylamine in rainbow trout. Fundam. Appl. Toxicol. 23, 53–62 (1994).

    Article  CAS  Google Scholar 

  33. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  34. Chin, L., Pomerantz, J. & DePinho, R. A. The INK4a/ARF tumor suppressor: one gene, two products, two pathways. Trends Biochem. Sci. 23, 291–296 (1998).

    Article  CAS  Google Scholar 

  35. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  Google Scholar 

  36. Nasevicius, A., Larson, J. & Ekker, S. C. Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17, 294–301 (2000).

    Article  CAS  Google Scholar 

  37. Habeck, H., Odenthal, J., Walderich, B., Maischein, H. & Schulte-Merker, S. Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis. Curr. Biol. 12, 1405–1412 (2002).

    Article  CAS  Google Scholar 

  38. Brown, L. A. et al. Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech. Dev. 90, 237–252 (2000).

    Article  CAS  Google Scholar 

  39. Liao, W., Ho, C. Y., Yan, Y. L., Postlethwait, J. & Stainier, D. Y. Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development 127, 4303–4313 (2000).

    CAS  PubMed  Google Scholar 

  40. Gering, M., Rodaway, A. R., Gottgens, B., Patient, R. K. & Green, A. R. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17, 4029–4045 (1998).

    Article  CAS  Google Scholar 

  41. Weinstein, B. M. Plumbing the mysteries of vascular development using the zebrafish. Semin. Cell Dev. Biol. 13, 515–522 (2002).

    Article  Google Scholar 

  42. Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).

    CAS  PubMed  Google Scholar 

  43. Picker, A., Scholpp, S., Bohli, H., Takeda, H. & Brand, M. A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines. Development 129, 3227–3239 (2002).

    CAS  PubMed  Google Scholar 

  44. Langenau, D. M. et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

    Article  CAS  Google Scholar 

  45. Fan, L., Alestrom, A., Alestrom, P. & Collodi, P. Development of cell cultures with competency for contributing to the zebrafish germ line. Crit. Rev. Eukary. Gene Exp. (in the press).

  46. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442 (2000).

    Article  CAS  Google Scholar 

  47. Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99–102 (2002).

    Article  CAS  Google Scholar 

  48. Patton, E. E. & Zon, L. I. The art and design of genetic screens: zebrafish. Nature Rev. Genet. 2, 956–966 (2001).

    Article  CAS  Google Scholar 

  49. Weinstein, B. M., Stemple, D. L., Driever, W. & Fishman, M. C. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Med. 1, 1143–1147 (1995).

    Article  CAS  Google Scholar 

  50. Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B. & Fishman, M. C. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000).

    Article  CAS  Google Scholar 

  51. Stainier, D. Y., Weinstein, B. M., Detrich, H. W., Zon, L. I. & Fishman, M. C. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141–3150 (1995).

    CAS  PubMed  Google Scholar 

  52. Cheng, K. C. & Moore, J. L. Genetic dissection of vertebrate processes in the zebrafish: a comparison of uniparental and two-generation screens. Biochem. Cell Biol. 75, 525–533 (1997).

    Article  CAS  Google Scholar 

  53. Amsterdam, A. & Hopkins, N. Retrovirus-mediated insertional mutagenesis in zebrafish. Methods Cell Biol. 60, 87–98 (1999).

    Article  CAS  Google Scholar 

  54. Golling, G. et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nature Genet. 31, 135–140 (2002).

    Article  CAS  Google Scholar 

  55. Peterson, R. T., Link, B. A., Dowling, J. E. & Schreiber, S. L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  Google Scholar 

  56. Peterson, R. T., Mably, J. D., Chen, J. N. & Fishman, M. C. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol. 11, 1481–1491 (2001).

    Article  CAS  Google Scholar 

  57. Chan, J., Bayliss, P. E., Wood, J. M. & Roberts, T. M. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 1, 257–267 (2002).

    Article  CAS  Google Scholar 

  58. Shimoda, N. et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219–232 (1999).

    Article  CAS  Google Scholar 

  59. Knapik, E. W. et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet. 18, 338–343 (1998).

    Article  CAS  Google Scholar 

  60. Cheng, R. et al. Cloning, sequencing, and embryonic expression of an N-ras proto-oncogene isolated from an enriched zebrafish (Danio rerio) cDNA library. Mol. Mar. Biol. Biotechnol. 6, 40–47 (1997).

    CAS  PubMed  Google Scholar 

  61. Bisgrove, B. W., Raible, D. W., Walter, V., Eisen, J. S. & Grunwald, D. J. Expression of c-ret in the zebrafish embryo: potential roles in motoneuronal development. J. Neurobiol. 33, 749–768 (1997).

    Article  CAS  Google Scholar 

  62. Parichy, D. M., Rawls, J. F., Pratt, S. J., Whitfield, T. T. & Johnson, S. L. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126, 3425–3436 (1999).

    CAS  PubMed  Google Scholar 

  63. Cheng, R. et al. Zebrafish (Danio rerio) p53 tumor suppressor gene: cDNA sequence and expression during embryogenesis. Mol. Mar. Biol. Biotechnol. 6, 88–97 (1997).

  64. Thisse, C., Neel, H., Thisse, B., Daujat, S. & Piette, J. The Mdm2 gene of zebrafish (Danio rerio): preferential expression during development of neural and muscular tissues, and absence of tumor formation after overexpression of its cDNA during early embryogenesis. Differentiation 66, 61–70 (2000).

    Article  CAS  Google Scholar 

  65. Schreiber-Agus, N., Horner, J., Torres, R., Chiu, F. C. & DePinho, R. A. Zebra fish myc family and max genes: differential expression and oncogenic activity throughout vertebrate evolution. Mol. Cell. Biol. 13, 2765–2775 (1993).

    Article  CAS  Google Scholar 

  66. Manickam, P. et al. Isolation, characterization, expression and functional analysis of the zebrafish ortholog of MEN1. Mamm. Genome 11, 448–454 (2000).

    Article  CAS  Google Scholar 

  67. Postlethwait, J., Amores, A., Force, A. & Yan, Y. in Methods in Cell Biology. Vol. 60 (eds Detrich, W., Westerfield, M. & Zon, L.) 149–163 (Academic Press, San Diego, 1999).

    Google Scholar 

  68. Yang, B. et al. Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39, 3533–3541 (2000).

    Article  CAS  Google Scholar 

  69. Streisinger, G., Coale, F., Taggart, C., Walker, C. & Grunwald, D. J. Clonal origins of cells in the pigmented retina of the zebrafish eye. Dev. Biol. 131, 60–69 (1989).

    Article  CAS  Google Scholar 

  70. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Amatruda, C. Belair, C. Erter, K. Lindahl, R. Murphey, E. Patton and J. Shepard for critical reading of the manuscript, and E. Patton for artistic contributions to the figures. K. Cheng, J. Glickman, R. Lamason and J. Moore are thanked for contributing photographs. H.M.S. is supported by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases. L.I.Z. is supported by funds from the National Insitutes of Health and is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

ang1

ang2

fli1

Flk1

hex

kit

Mdm2

men1

Myc

nras

rag1

rag2

ret

scl

tie1

tie2

tp53

FURTHER INFORMATION

The Children's Hospital Zebrafish Genome Initiative

Stanford Zebrafish Genome Project

Tübingen Map of the Zebrafish Genome

Washington University Zebrafish Genome Resources Project

Web site for Christine Nüsslein-Volard, Max Plank Institute

Website for Igor Dawid, NICHD

Website for Brant Weinstein, NICHD

The Zebrafish Information Network (ZFIN)

Zebrafish Webserver at the Cardiovascular Research Center, Massachusetts General Hospital

Glossary

DESMOPLASTIC STROMAL RESPONSE

Also called reactive fibrosis. Collagen deposition and fibroblast proliferation as a stromal response to an invasive cancer.

NUCLEAR PLEOMORPHISM

Variation in nuclear size and shape.

PROPTOSIS

An outward protrusion of the eye.

SYNTENY

The arrangement of mapped genes on a single chromosome. All loci on one chromosome are said to be syntenic (literally, 'on the same ribbon').

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, H., Zon, L. Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3, 533–539 (2003). https://doi.org/10.1038/nrc1126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing