[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The inflammatory microenvironment and microbiome in prostate cancer development

Key Points

  • Chronic inflammation is prevalent in the adult prostate and probably has a role in the formation of lesions that are putative risk factors for prostate cancer development

  • Prostatic inflammation might drive prostate carcinogenesis via oxidative stress and the generation of reactive oxygen species that induce mutagenesis or by causing epigenetic alterations that promote neoplastic transformation

  • Prostatic infection might drive an inflammatory prostate microenvironment, and the discovery of a urinary microbiome is probably important in terms of exposure of the prostate to potentially pathogenic microorganisms

  • Epithelial barrier disruption and inflammation in the prostate, once started, could establish a feed-forward mechanism resulting in a chronic, persistent inflammatory state

  • Full characterization of the link between the urinary microbiome and chronic prostatic inflammation might be critical to enable the development of strategies for prostate cancer prevention

Abstract

Chronic inflammation promotes the development of several types of solid cancers and might contribute to prostate carcinogenesis. This hypothesis partly originates in the frequent observation of inflammatory cells in the prostate microenvironment of adult men. Inflammation is associated with putative prostate cancer precursor lesions, termed proliferative inflammatory atrophy. Inflammation might drive prostate carcinogenesis via oxidative stress and generation of reactive oxygen species that induce mutagenesis. Additionally, inflammatory stress might cause epigenetic alterations that promote neoplastic transformation. Proliferative inflammatory atrophy is enriched for proliferative luminal epithelial cells of intermediate phenotype that might be prone to genomic alterations leading to prostatic intraepithelial neoplasia and prostate cancer. Studies in animals suggest that inflammatory changes in the prostate microenvironment contribute to reprogramming of prostate epithelial cells, a possible step in tumour initiation. Prostatic infection, concurrent with epithelial barrier disruption, might be a key driver of an inflammatory microenvironment; the discovery of a urinary microbiome indicates a potential source of frequent exposure of the prostate to a diverse number of microorganisms. Hence, current evidence suggests that inflammation and atrophy are involved in prostate carcinogenesis and suggests a role for the microbiome in establishing an inflammatory prostate microenvironment that might promote prostate cancer development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune cell distribution in normal and inflamed prostate tissue.
Figure 2: Distribution and patterns of inflammation in the prostate.
Figure 3: Intermediate cells in prostatic proliferative inflammatory atrophy (PIA).
Figure 4: Prostate tissue with admixed benign, inflamed, and malignant areas.
Figure 5: Pathogenesis of prostatic inflammation caused by a breach of epithelial barrier function and invasion of microorganisms.

Similar content being viewed by others

References

  1. Simons, J. W. Prostate cancer immunotherapy: beyond immunity to curability. Cancer Immunol. Res. 2, 1034–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sfanos, K. S., Hempel, H. A. & De Marzo, A. M. in Inflammation and Cancer, Advances in Experimental Medicine and Biology Vol. 816 (eds Aggarwal, B. B., Sung, B. & Gupta, S. B.) 153–181 (Springer, 2014).

    Book  Google Scholar 

  5. Sfanos, K. S. & De Marzo, A. M. Prostate cancer and inflammation: the evidence. Histopathology 60, 199–215 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Sfanos, K. S., Isaacs, W. B. & De Marzo, A. M. Infections and inflammation in prostate cancer. Am. J. Clin. Exp. Urol. 1, 3–11 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Sutcliffe, S. Sexually transmitted infections and risk of prostate cancer: review of historical and emerging hypotheses. Future Oncol. 6, 1289–1311 (2010).

    Article  PubMed  Google Scholar 

  9. Platz, E. A. & De Marzo, A. M. Epidemiology of inflammation and prostate cancer. J. Urol. 171 (Suppl.), S36–S40 (2004).

    PubMed  Google Scholar 

  10. Roberts, R. O., Bergstralh, E. J., Bass, S. E., Lieber, M. M. & Jacobsen, S. J. Prostatitis as a risk factor for prostate cancer. Epidemiology 15, 93–99 (2004).

    Article  PubMed  Google Scholar 

  11. Palapattu, G. S. et al. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 26, 1170–1181 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Dennis, L. K., Lynch, C. F. & Torner, J. C. Epidemiologic association between prostatitis and prostate cancer. Urology 60, 78–83 (2002).

    Article  PubMed  Google Scholar 

  13. Platz, E. A. et al. A prospective study of chronic inflammation in benign prostate tissue and risk of prostate cancer: linked PCPT and SELECT cohorts. Cancer Epidemiol. Biomarkers Prev. http://dx.doi.org/10.1158/1055-9965.EPI-17-0503 (2017).

  14. Josef Marx, F. & Karenberg, A. History of the term prostate. Prostate 69, 208–213 (2009).

    Article  PubMed  Google Scholar 

  15. Bostwick, D. G., de la Roza, G., Dundore, P., Corica, F. A. & Iczkowski, K. A. Intraepithelial and stromal lymphocytes in the normal human prostate. Prostate 55, 187–193 (2003).

    Article  PubMed  Google Scholar 

  16. Dikov, D., Bachurska, S., Staikov, D. & Sarafian, V. Intraepithelial lymphocytes in relation to NIH category IV prostatitis in autopsy prostate. Prostate 75, 1074–1084 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Galli, S. J., Grimbaldeston, M. & Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol. 8, 478–486 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujii, T. et al. Immunohistochemical analysis of inflammatory cells in benign and precancerous lesions and carcinoma of the prostate. Pathobiology 80, 119–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Sfanos, K. S., Wilson, B. A., De Marzo, A. M. & Isaacs, W. B. Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proc. Natl Acad. Sci. USA 106, 3443–3448 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Difuccia, B., Keith, I., Teunissen, B. & Moon, T. Diagnosis of prostatic inflammation: efficacy of needle biopsies versus tissue blocks. Urology 65, 445–448 (2005).

    Article  PubMed  Google Scholar 

  21. Strasner, A. & Karin, M. Immune infiltration and prostate cancer. Front. Oncol. 5, 128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gurel, B. et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomarkers Prev. 23, 847–856 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nickel, J. C., Downey, J., Young, I. & Boag, S. Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU Int. 84, 976–981 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Lanciotti, M. et al. The role of M1 and M2 macrophages in prostate cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy. BioMed Res. Int. 2014, 6 (2014).

    Article  Google Scholar 

  25. Sfanos, K. S. et al. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 69, 1694–1703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiniwa, Y. et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 13, 6947–6958 (2007).

    Article  PubMed  Google Scholar 

  27. Miller, A. M. et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J. Immunol. 177, 7398–7405 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Davidsson, S. et al. CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3+ regulatory T cells with respect to lethal prostate cancer. Mod. Pathol. 26, 448–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Sfanos, K. S. et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin. Cancer Res. 14, 3254–3261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Woo, J. R. et al. Tumor infiltrating B-cells are increased in prostate cancer tissue. J. Transl Med. 12, 1–9 (2014).

    Article  Google Scholar 

  31. Karja, V. et al. Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res. 25, 4435–4438 (2005).

    PubMed  Google Scholar 

  32. Flammiger, A. et al. High tissue density of FOXP3+ T cells is associated with clinical outcome in prostate cancer. Eur. J. Cancer 49, 1273–1279 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Ammirante, M., Luo, J.-L., Grivennikov, S., Nedospasov, S. & Karin, M. B-Cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flammiger, A. et al. Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer. APMIS 120, 901–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Hempel, H. A. et al. Low intratumoral mast cells are associated with a higher risk of prostate cancer recurrence. Prostate 77, 412–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Lissbrant, I. et al. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int. J. Oncol. 17, 445–451 (2000).

    CAS  PubMed  Google Scholar 

  37. Wang, W., Bergh, A. & Damber, J.-E. Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin. Cancer Res. 11, 3250–3256 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Nonomura, N. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 107, 1918–1922 (2011).

    Article  PubMed  Google Scholar 

  39. Richardsen, E., Uglehus, R. D., Due, J., Busch, C. & Busund, L. T. R. The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology 53, 30–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Irani, J. et al. High-grade inflammation in prostate cancer as a prognostic factor for biochemical recurrence after radical prostatectomy. Urology 54, 467–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. McArdle, P. A. et al. The relationship between T-lymphocyte subset infiltration and survival in patients with prostate cancer. Br. J. Cancer 91, 541–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kennedy, R. & Celis, E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol. Rev. 222, 129–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Beyer, M. & Schultze, J. L. Regulatory T cells in cancer. Blood 108, 804–811 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Nelson, W. G., De Marzo, A. M. & Isaacs, W. B. Prostate cancer. N. Engl. J. Med. 349, 366–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. O'Hagan, H. M. et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20, 606–619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O'Hagan, H. M., Mohammad, H. P. & Baylin, S. B. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 4, e1000155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yegnasubramanian, S. et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68, 8954–8967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aryee, M. J. et al. DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases. Sci. Transl Med. 5, 169ra110 (2013).

    Article  CAS  Google Scholar 

  49. Mani, R. S. et al. Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17, 2620–2631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haffner, M. C., De Marzo, A. M., Meeker, A. K., Nelson, W. G. & Yegnasubramanian, S. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin. Cancer Res. 17, 3858–3864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Leenders, G. J. et al. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am. J. Pathol. 162, 1529–1537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, W., Bergh, A. & Damber, J. E. Increased p53 immunoreactivity in proliferative inflammatory atrophy of prostate is related to focal acute inflammation. APMIS 117, 185–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Hockenbery, D. M., Zutter, M., Hickey, W., Nahm, M. & Korsmeyer, S. J. BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl Acad. Sci. USA 88, 6961–6965 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koh, C. M. et al. MYC and prostate cancer. Genes Cancer 1, 617–628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Putzi, M. J. & De Marzo, A. M. Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 56, 828–832 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, W., Bergh, A. & Damber, J. E. Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate. Prostate 69, 1378–1386 (2009).

    Article  PubMed  Google Scholar 

  60. Nakayama, M. et al. Hypermethylation of the human glutathione S-transferase-π gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol. 163, 923–933 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Marzo, A. M., Nelson, W. G., Bieberich, C. J. & Yegnasubramanian, S. Prostate cancer: new answers prompt new questions regarding cell of origin. Nat. Rev. Urol. 7, 650–652 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu, X. et al. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep. 17, 2596–2606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vykhovanets, E. V., Resnick, M. I., MacLennan, G. T. & Gupta, S. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer Prostat. Dis. 10, 15–29 (2007).

    Article  CAS  Google Scholar 

  64. Shinohara, D. B. et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 73, 1007–1015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Simons, B. W. et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J. Pathol. 235, 478–489 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sfanos, K. S. et al. Bacterial prostatitis enhances 2-amino-1-methyl-6-phenylimidazo[4,5-β]pyridine (PhIP)-induced cancer at multiple sites. Cancer Prevention Res. 8, 683–692 (2015).

    Article  CAS  Google Scholar 

  67. Kwon, O.-J., Zhang, L., Ittmann, M. M. & Xin, L. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc. Natl Acad. Sci. USA 111, E592–E600 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Olsson, J. et al. Chronic prostatic infection and inflammation by Propionibacterium acnes in a rat prostate infection model. PLoS ONE 7, e51434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Elkahwaji, J. E., Zhong, W., Hopkins, W. J. & Bushman, W. Chronic bacterial infection and inflammation incite reactive hyperplasia in a mouse model of chronic prostatitis. Prostate 67, 14–21 (2007).

    Article  PubMed  Google Scholar 

  70. Khalili, M. et al. Loss of Nkx3.1 expression in bacterial prostatitis. Am. J. Pathol. 176, 2259–2268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Haverkamp, J. M. et al. An inducible model of abacterial prostatitis induces antigen specific inflammatory and proliferative changes in the murine prostate. Prostate 71, 1139–1150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Higano, C. S. et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115, 3670–3679 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harada, N. et al. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Sci. Rep. 6, 23001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nam, Y.-D., Kim, H. J., Seo, J.-G., Kang, S. W. & Bae, J.-W. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS ONE 8, e82659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Galon, J. et al. Cancer classification using the Immunoscore: a worldwide task force. J. Transl Med. 10, 205–205 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Galon, J. et al. Towards the introduction of the 'Immunoscore' in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Capone, M. et al. Immunoscore: a new possible approach for melanoma classification [abstract]. J. Immunother. Cancer 2 (Suppl. 3), P193 (2014).

    Article  PubMed Central  Google Scholar 

  91. Graff, J. N. et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 7, 52810–52817 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Bishop, J. L. et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget 6, 234–242 (2015).

    Article  PubMed  Google Scholar 

  93. Martin, A. M. et al. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance. Prostate Cancer Prostat. Dis. 18, 325–332 (2015).

    Article  CAS  Google Scholar 

  94. Gevensleben, H. et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin. Cancer Res. 22, 1969–1977 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Abcam. Anti-PD-L1 antibody [EPR1161(2)] ab174838. Abcam http://www.abcam.com/pd-l1-antibody-epr11612-ab174838.html (2017).

  96. Ebelt, K. et al. Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters. Eur. J. Cancer 45, 1664–1672 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marchiando, A. M., Graham, W. V. & Turner, J. R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 5, 119–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Gatti, G. et al. Expression of Toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer. Prostate 69, 1387–1397 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Gambara, G. et al. Toll-like receptors in prostate infection and cancer between bench and bedside. J. Cell. Mol. Med. 17, 713–722 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manning, M. L., Williams, S. A., Jelinek, C. A., Kostova, M. B. & Denmeade, S. R. Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma. J. Immunol. 190, 2567–2574 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Fowler, J. E. Jr & Mariano, M. Longitudinal studies of prostatic fluid immunoglobulin in men with bacterial prostatitis. J. Urol. 131, 363–369 (1984).

    Article  PubMed  Google Scholar 

  108. Isaacs, J. T. Prostatic structure and function in relation to the etiology of prostatic cancer. Prostate 4, 351–366 (1983).

    Article  CAS  PubMed  Google Scholar 

  109. Fair, W. R. & Parrish, R. F. Antibacterial substances in prostatic fluid. Prog. Clin. Biol. Res. 75A, 247–264 (1981).

    CAS  PubMed  Google Scholar 

  110. Zdrodowska-Stefanow, B., Ostaszewska-Puchalska, I., Badyda, J. & Galewska, Z. The evaluation of markers of prostatic inflammation and function of the prostate gland in patients with chronic prostatitis. Arch. Immunol. Ther. Exp. 56, 277–282 (2008).

    Article  CAS  Google Scholar 

  111. Fair, W. R., Couch, J. & Wehner, N. Prostatic antibacterial factor identity and significance. Urology 7, 169–177 (1976).

    Article  CAS  PubMed  Google Scholar 

  112. Hrbacek, J., Urban, M., Hamsikova, E., Tachezy, R. & Heracek, J. Thirty years of research on infection and prostate cancer: no conclusive evidence for a link. A systematic review. Urol. Oncol. 31, 951–965 (2014).

    Article  Google Scholar 

  113. Sutcliffe, S. et al. Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration. J. Urol. 175, 1937–1942 (2006).

    Article  PubMed  Google Scholar 

  114. Sutcliffe, S. et al. Prostate involvement during sexually transmitted infections as measured by prostate-specific antigen concentration. Br. J. Cancer 105, 602–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Milbrandt, M. et al. Insight into infection-mediated prostate damage: contrasting patterns of C-reactive protein and prostate-specific antigen levels during infection. Prostate 77, 1325–1334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Cohen, R. J., Shannon, B. A., McNeal, J. E., Shannon, T. & Garrett, K. L. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J. Urol. 173, 1969–1974 (2005).

    Article  PubMed  Google Scholar 

  118. Mak, T. N., Yu, S. H., De Marzo, A. M., Bruggemann, H. & Sfanos, K. S. Multilocus sequence typing (MLST) analysis of Propionibacterium acnes isolates from radical prostatectomy specimens. Prostate 73, 770–777 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Sfanos, K. S. & Isaacs, W. B. An evaluation of PCR primer sets used for detection of Propionibacterium acnes in prostate tissue samples. Prostate 68, 1492–1495 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Yanamandra, K. et al. Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PLoS ONE 4, e5562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huang, W.-Y. et al. Sexually transmissible infections and prostate cancer risk. Cancer Epidemiol., Biomarkers Prevention 17, 2374–2381 (2008).

    Article  CAS  Google Scholar 

  122. Taylor, M. L., Mainous, A. G. 3rd & Wells, B. J. Prostate cancer and sexually transmitted diseases: a meta-analysis. Family Med. 37, 506–512 (2005).

    Google Scholar 

  123. Sutcliffe, S. et al. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 15, 939–945 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Sutcliffe, S. et al. Plasma antibodies against Chlamydia trachomatis, Human Papillomavirus, and Human Herpesvirus Type 8 in relation to prostate cancer: a prospective study. Cancer Epidemiol. Biomarkers Prev. 16, 1573–1580 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anttila, T. et al. Chlamydial antibodies and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 14, 385–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Whiteside, S. A., Razvi, H., Dave, S., Reid, G. & Burton, J. P. The microbiome of the urinary tract-a role beyond infection. Nat. Rev. Urol. 12, 81–90 (2015).

    Article  PubMed  Google Scholar 

  127. Gottschick, C. et al. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 5, 99 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Pearce, M. M. et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5, e01283-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hilt, E. E. et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 52, 871–876 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nelson, D. E. et al. Characteristic male urine microbiomes associate with asymptomatic sexually tansmitted infection. PLoS ONE 5, e14116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nelson, D. E. et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE 7, e36298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Santiago-Rodriguez, T. M., Ly, M., Bonilla, N. & Pride, D. T. The human urine virome in association with urinary tract infections. Front. Microbiol. 6, 14 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Nickel, J. C. et al. Assessment of the lower urinary tract microbiota during symptom flare in women with urologic chronic pelvic pain syndrome: a MAPP network study. J. Urol. 195, 356–362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dong, Q. et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE 6, e19709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nickel, J. C. & Xiang, J. Clinical significance of nontraditional bacterial uropathogens in the management of chronic prostatitis. J. Urol. 179, 1391–1395 (2008).

    Article  PubMed  Google Scholar 

  136. Fouts, D. E. et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl Med. 10, 174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shrestha, E. et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. http://dx.doi.org/10.1016/j.juro.2017.08.001 (2017).

  138. Davidsson, S. et al. Frequency and typing of Propionibacterium acnes in prostate tissue obtained from men with and without prostate cancer. Infect. Agent. Cancer 11, 26 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nickel, J. C. et al. Search for microorganisms in men with urologic chronic pelvic pain syndrome: a culture-independent analysis in the MAPP research network. J. Urol. 194, 127–135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Javurek, A. B. et al. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci. Rep. 6, 23027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Horwitz, D. et al. Decreased microbiota diversity associated with urinary tract infection in a trial of bacterial interference. J. Infect. 71, 358–367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Caini, S. et al. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol. 38, 329–338 (2014).

    Article  PubMed  Google Scholar 

  143. Kirby, R. S., Lowe, D., Bultitude, M. I. & Shuttleworth, K. E. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br. J. Urol. 54, 729–731 (1982).

    Article  CAS  PubMed  Google Scholar 

  144. Yu, H. et al. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch. Med. Sci. 11, 385–394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Krieger, J. N., Dobrindt, U., Riley, D. E. & Oswald, E. Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes. Urology 77, 1420–1425 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Prostate Cancer Foundation, the V Foundation for Cancer Research, the Patrick C. Walsh Prostate Cancer Research Fund, and the Department of Defense Prostate Cancer Research Program for ongoing research support.

Author information

Authors and Affiliations

Authors

Contributions

K.S.S. and A.M.D. researched data for the article. K.S.S., S.Y., and A.M.D. wrote the manuscript. All authors made substantial contributions to discussion of the article content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Karen S. Sfanos or Angelo M. De Marzo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfanos, K., Yegnasubramanian, S., Nelson, W. et al. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 15, 11–24 (2018). https://doi.org/10.1038/nrurol.2017.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing