Key Points
-
Contrary to doctrine, the urinary tract is inhabited by a unique urinary microbiota; further research is needed to characterize this microbial community in health and disease
-
Alterations in the urinary microbiota have been linked to urologic disease, such as neurogenic bladder dysfunction, interstitial cystitis and urgency urinary incontinence
-
The microbiome, particularly that of the gut, has a key role in the development and progression of disease within the urinary tract
-
Although early studies of probiotics in patients with nephrolithiasis or bladder cancer have demonstrated variable effectiveness, such alternative treatment strategies focused on reconstituting the microbiome should be further explored
Abstract
Urologists rarely need to consider bacteria beyond their role in infectious disease. However, emerging evidence shows that the microorganisms inhabiting many sites of the body, including the urinary tract—which has long been assumed sterile in healthy individuals—might have a role in maintaining urinary health. Studies of the urinary microbiota have identified remarkable differences between healthy populations and those with urologic diseases. Microorganisms at sites distal to the kidney, bladder and urethra are likely to have a profound effect on urologic health, both positive and negative, owing to their metabolic output and other contributions. Connections between the gut microbiota and renal stone formation have already been discovered. In addition, bacteria are also used in the prevention of bladder cancer recurrence. In the future, urologists will need to consider possible influences of the microbiome in diagnosis and treatment of certain urological conditions. New insights might provide an opportunity to predict the risk of developing certain urological diseases and could enable the development of innovative therapeutic strategies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
Ursell, L. K., Metcalf, J. L., Parfrey, L. W. & Knight, R. Defining the human microbiome. Nutr. Rev. 70 (Suppl. 1), S38–S44 (2012).
Lazarevic, V. et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79, 266–271 (2009).
Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).
Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).
Branton, W. G. et al. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status. PLoS ONE 8, e54673 (2013).
Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).
Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014 (2014).
Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).
Sekirov, I., Russell, S. L., Antunes, C. M. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).
Arends, M. J. Pathways of colorectal carcinogenesis. Appl. Immunohistochem. Mol. Morphol. 21, 97–102 (2013).
Yang, T., Owen, J. L., Lightfoot, Y. L., Kladde, M. P. & Mohamadzadeh, M. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol. Med. 19, 714–725 (2013).
Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
Gan, X. T. et al. Probiotic administration attenuates myocardial hypertrophy and heart failure following myocardial infarction in the rat. Circ. Heart Fail. 7, 491–499 (2014).
Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).
Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).
de Vos, W. M. & Nieuwdorp, M. Genomics: A gut prediction. Nature 498, 48–49 (2013).
Hilt, E. E. et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 52, 871–876 (2014).
Pearce, M. M. et al. The female urinary microbiome: A comparison of women with and without urgency urinary incontinence. MBio 5, e01283-14 (2014).
Fricke, W. F., Maddox, C., Song, Y. & Bromberg, J. S. Human microbiota characterization in the course of renal transplantation. Am. J. Transplant. 14, 416–427 (2014).
Nelson, D. E. et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE 7, e36298 (2012).
Siddiqui, H., Nederbragt, A. J., Lagesen, K., Jeansson, S. L. & Jakobsen, K. S. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 11, 244 (2011).
Siddiqui, H., Lagesen, K., Nederbragt, A. J., Jeansson, S. L. & Jakobsen, K. S. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol. 12, 205 (2012).
Fouts, D. E. et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 10, 174 (2012).
Nelson, D. E. et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 5, e14116 (2010).
Dong, Q. et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE 6, e19709 (2011).
Lewis, D. A. et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell. Infect. Microbiol. 3, 41 (2013).
Willner, D. et al. Single clinical isolates from acute uncomplicated urinary tract infections are representative of dominant in situ populations. MBio 5, e01064-13 (2014).
Xu, W. et al. Mini-review: perspective of the microbiome in the pathogenesis of urothelial carcinoma. Am. J. Clin. Exp. Urol. 2, 57–61 (2014).
Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113 (Suppl. 1A), 14S–19S (2002).
Soriano, F. & Tauch, A. Microbiological and clinical features of Corynebacterium urealyticum: urinary tract stones and genomics as the Rosetta Stone. Clin. Microbiol. Infect. 14, 632–643 (2008).
Lee, J. W., Shim, Y. H. & Lee, S. J. Lactobacillus colonization in infants with urinary tract infection. Pediatr. Nephrol. 24, 135–139 (2009).
Latthe, P. M., Toozs-Hobson, P. & Gray, J. Mycoplasma and Ureaplasma colonisation in women with lower urinary tract symptoms. J. Obstet. Gynaecol. 28, 519–521 (2008).
Burton, J. P. & Reid, G. Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques. J. Infect. Dis. 186, 1770–1780 (2002).
Burton, J. P., McCormick, J. K., Cadieux, P. A. & Reid, G. Digoxigenin-labelled peptide nucleic acid to detect lactobacilli PCR amplicons immobilized on membranes from denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 36, 145–149 (2003).
Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P. & Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 95, 401–414 (2013).
Stapleton, A. E. Urinary tract infection pathogenesis: host factors. Infect. Dis. Clin. North Am. 28, 149–159 (2014).
Ragnarsdóttir, B., Lutay, N., Grönberg-Hernandez, J., Köves, B. & Svanborg, C. Genetics of innate immunity and UTI susceptibility. Nat. Rev. Urol. 8, 449–468 (2011).
Kuitunen, M. et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123, 335–341 (2009).
Boris, S. & Barbés, C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2, 543–546 (2000).
Liévin-Le Moal, V. & Servin, A. L. Anti-Infective Activities of Lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27, 167–199 (2014).
Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
Micheli, A. et al. The advantage of women in cancer survival: an analysis of EUROCARE-4 data. Eur. J. Cancer 45, 1017–1027 (2009).
Ghani, K. R. et al. Emergency department visits in the United States for upper urinary tract stones: trends in hospitalization and charges. J. Urol. 191, 90–96 (2014).
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).
Monachese, M., Burton, J. P. & Reid, G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl. Environ. Microbiol. 78, 6397–6404 (2012).
Nee, L. E. et al. Environmental-occupational risk factors and familial associations in multiple system atrophy: a preliminary investigation. Clin. Auton. Res. 1, 9–13 (1991).
Friesen, M. C., Costello, S., Thurston, S. W. & Eisen, E. A. Distinguishing the common components of oil- and water-based metalworking fluids for assessment of cancer incidence risk in autoworkers. Am. J. Ind. Med. 54, 450–460 (2011).
Zlaˇvog, A. V. et al. Estimation of ochratoxin A in the human blood of Romanian population. Rev. Med. Chir. Soc. Med. Nat. Iasi 117, 1009–1013 (2013).
Mirvish, S. S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 93, 17–48 (1995).
Cryan, J. F. & O'Mahoney, S. M. The microbiome–gut–brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187–192 (2011).
Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science 292, 1115–1118 (2001).
Ghartey, J. P. et al. Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli. PLoS ONE 9, e96659 (2014).
Habash, M. B., Van der Mei, H. C., Busscher, H. J. & Reid, G. The effect of water, ascorbic acid, and cranberry derived supplementation on human urine and uropathogen adhesion to silicone rubber. Can. J. Microbiol. 45, 691–694 (1999).
Ferry, S. A., Holm, S. E., Stenlund, H., Lundholm, R. & Monsen, T. J. The natural course of uncomplicated lower urinary tract infection in women illustrated by a randomized placebo controlled study. Scand. J. Infect. Dis. 36, 296–301 (2004).
Nicolle, L. E., Zhanel, G. G. & Harding, G. K. Microbiological outcomes in women with diabetes and untreated asymptomatic bacteriuria. World J. Urol. 24, 61–65 (2006).
Reid, G. et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol. 9, 27–38 (2011).
Bleidorn, J., Gágyor, I., Kochen, M. M., Wegscheider, K. & Hummers-Pradier, E. Symptomatic treatment (ibuprofen) or antibiotics (ciprofloxacin) for uncomplicated urinary tract infection?—Results of a randomized controlled pilot trial. BMC Med. 8, 30 (2010).
Gágyor, I. et al. Immediate versus conditional treatment of uncomplicated urinary tract infection - a randomized-controlled comparative effectiveness study in general practices. BMC Infect. Dis. 12, 146 (2012).
Swann, J. R. et al. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J. Proteome Res. 10, 3590–3603 (2011).
Gupta, A., Dwivedi, M., Mahdi, A. A., Khetrapal, C. L. & Bhandari, M. Broad identification of bacterial type in urinary tract infection using 1H NMR spectroscopy. J. Proteome Res. 11, 1844–1854 (2012).
Nevedomskaya, E. et al. 1H NMR-based metabolic profiling of urinary tract infection: combining multiple statistical models and clinical data. Metabolomics 8, 1227–1235 (2012).
Stapleton, A. E. et al. Recurrent urinary tract infection and urinary Escherichia coli in women ingesting cranberry juice daily: a randomized controlled trial. Mayo Clin. Proc. 87, 143–150 (2012).
Scharenberg, M., Schwardt, O., Rabbani, S. & Ernst, B. Target selectivity of FimH Antagonists. J. Med. Chem. 55, 9810–9816 (2012).
Virgin, H. W. & Todd, J. A. Metagenomics and personalized medicine. Cell 147, 44–56 (2011).
Virgin, H. W. The virome in mammalian physiology and disease. Cell 157, 142–150 (2014).
Gibs, J. et al. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008. Sci. Total Environ. 458–460, 107–116 (2013).
Goneau, L. W. et al. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob. Agents Chemother. 58, 2089–2097 (2014).
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
Hummelen, R. et al. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS ONE 6, e26602 (2011).
Zhu, L. et al. Structural changes in the gut microbiome of constipated patients. Physiol. Genomics 46, 679–686 (2014).
Heinemann, C. & Reid, G. Vaginal microbial diversity among postmenopausal women with and without hormone replacement therapy. Can. J. Microbiol. 51, 777–781 (2005).
Com, E. et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol. Reprod. 68, 95–104 (2003).
Gupta, K., Hillier, S. L., Hooton, T. M., Roberts, P. L. & Stamm, W. E. Effects of contraceptive method on the vaginal flora: a prospective evaluation. J. Infect. Dis. 181, 595–601 (2000).
McGroarty, J. A., Tomeczek, L., Pond, D. G., Reid, G. & Bruce, A. W. Hydrogen peroxide production by Lactobacillus species: correlation with susceptibility to the spermicidal compound nonoxynol-9. J. Infect. Dis. 165, 1142–1144 (1992).
Keeney, K. M., Yurist-Doutsch, S., Arrieta, M. C. & Finlay, B. B. Effects of antibiotics on human microbiota and subsequent disease. Annu. Rev. Microbiol. 68, 217–235 (2014).
Cornick, N. A. & Allison, M. J. Anabolic incorporation of oxalate by Oxalobacter formigenes. Appl. Environ. Microbiol. 62, 3011–3013 (1996).
Siener, R. et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 83, 1144–1149 (2013).
Jiang, J. et al. Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J. Urol. 186, 135–139 (2011).
Kaufman, D. W. et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19, 1197–1203 (2008).
Kelly, J. P., Curhan, G. C., Cave, D. R., Anderson, T. E. & Kaufman, D. W. Factors related to colonization with Oxalobacter formigenes in U.S. adults. J. Endourol. 25, 673–679 (2011).
Hatch, M., Gjymishka, A., Saliido, E. C., Allison, M. J. & Freel, R. W. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G461–G469 (2011).
Sidhu, H., Allison, M. J., Chow, J. M., Clark, A. & Peck, A. B. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J. Urol. 166, 1487–1491 (2001).
Freel, R. W., Hatch, M., Green, M. & Soleimani, M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 209, G719–G728 (2006).
Cornelius, J. G. & Peck, A. B. Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes. J. Med. Microbiol. 53, 249–254 (2004).
Sikora, P. et al. Intestinal colonization with Oxalobacter formigenes and its relation to urinary oxalate excretion in pediatric patients with idiopathic calcium urolithiasis. Arch. Med. Res. 40, 369–373 (2009).
Sidhu, H. et al. Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reaction-based detection system. Mol. Diagn. 2, 89–97 (1997).
Sidhu, H. et al. Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352, 1026–1029 (1998).
Borghi, L., Nouvenne, A. & Meschi, T. Probiotics and dietary manipulations in calcium oxalate nephrolithiasis: two sides of the same coin? Kidney Int. 78, 1063–1065 (2010).
Sidhu, H. et al. Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J. Am. Soc. Nephrol. 10 (Suppl. 14), S334–S340 (1999).
Knight, J., Deora, R., Assimos, D. G. & Holmes, R. P. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis 41, 187–196 (2013).
Duncan, S. H. et al. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 68, 3841–3847 (2002).
Hoppe, B. et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 70, 1305–1311 (2006).
Lieske, J. C. et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 78, 1178–1185 (2010).
Okombo, J. & Liebman, M. Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urol. Res. 38, 169–178 (2010).
Ferraz, R. R. et al. Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol. Res. 37, 95–100 (2009).
Goldfarb, D. S., Modersitzki, F. & Asplin, J. R. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2, 745–749 (2007).
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
Campieri, C. et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 60, 1097–1105 (2001).
Cho, E., Adami, H. O. & Lindblad, P. Epidemiology of renal cell cancer. Hematol. Oncol. Clin. North Am. 25, 651–665 (2011).
Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).
Gorbachinsky, I., Akpinar, H. & Assimos, D. G. Metabolic syndrome and urologic diseases. Rev. Urol. 12, e157–e180 (2010).
Niwa, T. et al. The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl. 62, S23–S28 (1997).
Schepers, E., Glorieux, G. & Vanholder, R. The gut: the forgotten organ in uremia? Blood Purif. 29, 130–136 (2010).
Poesen, R., Meijers, B. & Evenepoel, P. The colon: an overlooked site for therapeutics in dialysis patients. Semin. Dial. 26, 323–332 (2013).
Satoh, M. et al. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp. Nephrol. 95, e111–e118 (2003).
Evenepoel, P., Meijers, B. K., Bammens, B. R. & Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. Suppl. 76, S12–S19 (2009).
Hoesl, C. E. & Altwein, J. E. The probiotic approach: an alternative treatment option in urology. Eur. Urol. 47, 288–296 (2005).
Fahmy, N., Lazo-Langner, A., Iansavichene, A. E. & Pautler, S. E. Effect of anticoagulants and antiplatelet agents on the efficacy of intravesical BCG treatment of bladder cancer: a systematic review. Can. Urol. Assoc. J. 7, E740–E749 (2013).
Ratliff, T. L., Palmer, J. O., McGarr, J. A. & Brown, E. J. Intravesical bacillus Calmette-Guérin therapy for murine bladder tumors: initiation of the response by fibronectin-mediate attachment of bacillus Calmette-Guérin. Cancer Res. 47, 1762–1766 (1987).
Kuroda, K., Brown, E. J., Telle, W. B., Russell, D. G. & Ratliff, T. L. Characterization of the bacillus Calmette-Guérin by human bladder tumor cells. J. Clin. Invest. 91, 69–76 (1993).
Chen, F., Zhang, G., Iwamoto, Y. & See, W. A. BCG directly induces cell cycle arrest in human transitional carcinoma cell lines as a consequence of integrin cross-linking. BMC Urol. 5, 8 (2005).
Pook, S. H., Rahmat, J. N., Esuvaranathan, K. & Mahendran, R. Internalization of Mycobacterium bovis, bacillus Calmette-Guérin, by bladder cells is cytotoxic. Oncol. Rep. 18, 1315–1320 (2007).
Rahmat, J. N., Esuvaranathan, K. & Mahendran, R. Bacillus Calmette-Guérin induces cellular reactive oxygen species and lipid peroxidation in cancer cells. Urology 79, 1411.e15–1411.e20 (2012).
McMillan, A., Macklaim, J. M., Burton, J. P. & Reid, G. Adhesion of Lactobacillus iners AB-1 to human fibronectin: a key mediator for persistence in the vagina? Reprod. Sci. 20, 791–796 (2013).
Cosseau, C. et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host–microbe homeostasis. Infect. Immun. 76, 4163–4175 (2008).
Lamm, D. L. Efficacy and safety of bacille Calmette-Guérin immunotherapy in superficial bladder cancer. Clin. Infect. Dis. 31 (Suppl. 3), S86–S90 (2000).
Kato, I., Kobayashi, S., Yokokura, T. & Mutai, M. Antitumor activity of Lactobacillus casei in mice. Gan 72, 517–523 (1981).
Tomita, K. et al. Influence of Lactobacillus casei on rat bladder carcinogenesis [Japanese]. Nihon Hinyokika Gakkai Zasshi 85, 655–663 (1994).
Takahashi, T. et al. Antitumor effects of the intravesical instillation of heat killed cells of the Lactobacillus casei strain Shirota on the murine orthotopic bladder tumor MBT-2. J. Urol. 166, 2506–2511 (2001).
Seow, S. W., Rahmat, J. N., Bay, B. H., Lee, Y. K. & Mahendran, R. Expression of chemokine/cytokine genes and immune cell recruitment following the instillation of Mycobacterium bovis, bacillus Calmette-Guérin or Lactobacillus rhamnosus strain GG in the healthy murine bladder. Immunology 124, 419–427 (2008).
Seow, S. W. et al. Lactobacillus species is more cytotoxic to human bladder cancer cells than Mycobacterium bovis (bacillus Calmette-Guérin). J. Urol. 168, 2236–2239 (2002).
Aso, Y. & Akazan, H. Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. BLP Study Group. Urol. Int. 49, 125–129 (1992).
de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).
Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).
Gagliani, N., Hu, B., Huber, S., Elinav, E. & Flavell, R. A. The fire within: microbes inflame tumors. Cell 157, 776–783 (2014).
Irrazábal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell 54, 309–320 (2014).
Stapleton, A. E. et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 52, 1212–1217 (2011).
Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916. e7 (2012).
Youngster, I. et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin. Infect. Dis. 58, 1515–1522 (2014).
Allen-Vercoe, E. Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective. Curr. Opin. Microbiol. 16, 625–629 (2013).
Acknowledgements
The authors' research work was supported by The W. Garfield Weston Foundation.
Author information
Authors and Affiliations
Contributions
All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Whiteside, S., Razvi, H., Dave, S. et al. The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol 12, 81–90 (2015). https://doi.org/10.1038/nrurol.2014.361
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrurol.2014.361