[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Solution-processed wafer-scale nanoassembly of conducting polymers enables selective ultratrace nerve agent detection at low power

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power. Nanostructured conducting polymers have emerged as promising candidates for this technology due to their excellent stability with low redox potential, high conductivity, and selectivity endowed by chemical functionalization. However, it remains challenging to develop cost-effective and large-scale assembly approaches for functionalized conducting polymers in the practical fabrication of electronic devices. Here, we reported a straightforward wafer-scale assembly of nanostructured hexafluoroisopropanol functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-HFIP) on smooth substrates. This approach is template-free, solution-processed, and adaptable to conductive and nonconductive substrates. By this approach, the nanostructured PEDOT-HFIPs could be easily integrated onto interdigitated electrodes with intimate ohmic contact. At the optimized space-to-volume ratio, we demonstrated a low-power, sensitive, and selective nerve agent sensing technology using this platform by detecting sarin vapor with a limit of detection (LOD) of 10 ppb and signal strength of 400 times the water interference at the same concentration, offering significant advantages over existing similar technologies. We envision that its easy scale-up, micro size, small power consumption, and combination of high sensitivity and selectivity make it attractive for various wearable platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J. A.; Shin, M. K.; Kim, S. H.; Cho, H. U.; Spinks, G. M.; Wallace, G. G.; Lima, M. D.; Lepró, X.; Kozlov, M. E.; Baughman, R. H. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 2013, 4, 1970.

    Google Scholar 

  2. Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433.

    CAS  Google Scholar 

  3. Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 2000, 489, 17–27.

    CAS  Google Scholar 

  4. Gueye, M. N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J. P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616.

    CAS  Google Scholar 

  5. Fan, X.; Nie, W. Y.; Tsai, H.; Wang, N. X.; Huang, H. H.; Cheng, Y. J.; Wen, R. J.; Ma, L. J.; Yan, F.; Xia, Y. G. PEDOT:PSS for flexible and stretchable electronics: Modifications, strategies, and applications. Adv. Sci. 2019, 6, 1900813.

    CAS  Google Scholar 

  6. Worfolk, B. J.; Andrews, S. C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. N. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138–14143.

    CAS  Google Scholar 

  7. Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

    Google Scholar 

  8. Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 2016, 7, 11287.

    Google Scholar 

  9. Zozoulenko, I.; Franco-Gonzalez, J. F.; Gueskine, V.; Mehandzhiyski, A.; Modarresi, M.; Rolland, N.; Tybrandt, K. Electronic, optical, morphological, transport, and electrochemical properties of PEDOT: A theoretical perspective. Macromolecules 2021, 54, 5915–5934.

    CAS  Google Scholar 

  10. Sandström, A.; Dam, H. F.; Krebs, F. C.; Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 2012, 3, 1002.

    Google Scholar 

  11. Lin, H. A.; Zhu, B.; Wu, Y. W.; Sekine, J.; Nakao, A.; Luo, S. C.; Yamashita, Y.; Yu, H. H. Dynamic poly(3,4-ethylenedioxythiophene)s integrate low impedance with redox-switchable biofunction. Adv. Funct. Mater. 2018, 28, 1703890.

    Google Scholar 

  12. Zhu, B.; Luo, S. C.; Zhao, H. C.; Lin, H. A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. H. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 2014, 5, 4523.

    CAS  Google Scholar 

  13. Luo, S. C.; Kantchev, E. A.; Zhu, B.; Siang, Y. W.; Yu, H. H. Tunable, dynamic and electrically stimulated lectin-carbohydrate recognition on a glycan-grafted conjugated polymer. Chem. Commun. 2012, 48, 6942–6944.

    CAS  Google Scholar 

  14. Hansen, T. S.; Daugaard, A. E.; Hvilsted, S.; Larsen, N. B. Spatially selective functionalization of conducting polymers by “electroclick” chemistry. Adv. Mater. 2009, 21, 4483–4486.

    CAS  Google Scholar 

  15. Jonsson, A.; Inal, S.; Uguz, I.; Williamson, A. J.; Kergoat, L.; Rivnay, J.; Khodagholy, D.; Berggren, M.; Bernard, C.; Malliaras, G. G. et al. Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proc. Natl. Acad. Sci. USA 2016, 113, 9440–9445.

    CAS  Google Scholar 

  16. Kozai, T. D. Y.; Langhals, N. B.; Patel, P. R.; Deng, X. P.; Zhang, H. N.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 2012, 11, 1065–1073.

    CAS  Google Scholar 

  17. Maya-Vetencourt, J. F.; Ghezzi, D.; Antognazza, M. R.; Colombo, E.; Mete, M.; Feyen, P.; Desii, A.; Buschiazzo, A.; Di Paolo, M.; Di Marco, S. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 2017, 16, 681–689.

    CAS  Google Scholar 

  18. Persson, K. M.; Lönnqvist, S.; Tybrandt, K.; Gabrielsson, R.; Nilsson, D.; Kratz, G.; Berggren, M. Matrix addressing of an electronic surface switch based on a conjugated polyelectrolyte for cell sorting. Adv. Funct. Mater. 2015, 25, 7056–7063.

    CAS  Google Scholar 

  19. Li, S. X.; Pei, Z. B.; Zhou, F.; Liu, Y.; Hu, H. B.; Ji, S. L.; Ye, C. H. Flexible Si/PEDOT:PSS hybrid solar cells. Nano Res. 2015, 8, 3141–3149.

    CAS  Google Scholar 

  20. Yang, Y. J.; Li, S. B.; Yang, W. Y.; Yuan, W. T.; Xu, J. H.; Jiang, Y. D. In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl. Mater. Interfaces 2014, 6, 13807–13814.

    CAS  Google Scholar 

  21. Jiang, Y.; Tang, N.; Zhou, C.; Han, Z. Y.; Qu, H. M.; Duan, X. X. A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 2018, 10, 20578–20586.

    CAS  Google Scholar 

  22. Wang, L.; Yue, X. P.; Sun, Q. Z.; Zhang, L. R.; Ren, G. Z.; Lu, G.; Yu, H. D.; Huang, W. Flexible organic electrochemical transistors for chemical and biological sensing. Nano Res. 2022, 15, 2433–2464.

    CAS  Google Scholar 

  23. Lee, J.; Han, T. H.; Park, M. H.; Jung, D. Y.; Seo, J.; Seo, H. K.; Cho, H.; Kim, E.; Chung, J.; Choi, S. Y. et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat. Commun. 2016, 7, 11791.

    CAS  Google Scholar 

  24. Li, Y. W.; Meng, L.; Yang, Y. M.; Xu, G. Y.; Hong, Z. R.; Chen, Q.; You, J. B.; Li, G.; Yang, Y.; Li, Y. F. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.

    CAS  Google Scholar 

  25. Le Ouay, B.; Boudot, M.; Kitao, T.; Yanagida, T.; Kitagawa, S.; Uemura, T. Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 2016, 138, 10088–10091.

    CAS  Google Scholar 

  26. Yang, G.; Kampstra, K. L.; Abidian, M. R. Highperformance conducting polymer nanofiber biosensors for detection of biomolecules. Adv. Mater. 2014, 26, 4954–4960.

    CAS  Google Scholar 

  27. Huang, T. Y.; Kung, C. W.; Liao, Y. T.; Kao, S. Y.; Cheng, M. S.; Chang, T. H.; Henzie, J.; Alamri, H. R.; Alothman, Z. A.; Yamauchi, Y. et al. Enhanced charge collection in MOF-525-PEDOT nanotube composites enable highly sensitive biosensing. Adv. Sci. 2017, 4, 1700261.

    Google Scholar 

  28. Yao, B. W.; Wang, H. Y.; Zhou, Q. Q.; Wu, M. M.; Zhang, M.; Li, C.; Shi, G. Q. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 2017, 29, 1700974.

    Google Scholar 

  29. Su, D. W.; Cortie, M.; Fan, H. B.; Wang, G. X. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700587.

    Google Scholar 

  30. Lin, Y. F.; Li, C. T.; Ho, K. C. A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells. J. Mater. Chem. A 2015, 4, 384–394.

    Google Scholar 

  31. Luo, S. C.; Yu, H. H.; Wan, A. C. A.; Han, Y.; Ying, J. Y. A general synthesis for PEDOT-coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization. Small 2008, 4, 2051–2058.

    CAS  Google Scholar 

  32. Kelly, T. L.; Yamada, Y.; Che, S. P. Y.; Yano, K.; Wolf, M. O. Monodisperse poly(3,4-ethylenedioxythiophene)-silica microspheres: Synthesis and assembly into crystalline colloidal arrays. Adv. Mater. 2008, 20, 2616–2621.

    CAS  Google Scholar 

  33. Xu, H.; Pang, X. C.; He, Y. J.; He, M.; Jung, J.; Xia, H. P.; Lin, Z. Q. An unconventional route to monodisperse and intimately contacted semiconducting organic-inorganic nanocomposites. Angew. Chem., Int. Ed. 2015, 54, 4636–4640.

    CAS  Google Scholar 

  34. Lin, H. A.; Luo, S. C.; Zhu, B.; Chen, C.; Yamashita, Y.; Yu, H. H. Molecular or nanoscale structures? The deciding factor of surface properties on functionalized poly(3,4-ethylenedioxythiophene) nanorod arrays. Adv. Funct. Mater. 2013, 23, 3212–3219.

    CAS  Google Scholar 

  35. Meng, L. Y.; Turner, A. P. F.; Mak, W. C. Tunable 3D nanofibrous and bio-functionalised PEDOT network explored as a conducting polymer-based biosensor. Biosens. Bioelectron. 2020, 159, 112181.

    CAS  Google Scholar 

  36. Ni, D.; Chen, Y. X.; Song, H. J.; Liu, C. C.; Yang, X. W.; Cai, K. F. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 2019, 7, 1323–1333.

    CAS  Google Scholar 

  37. Li, W. G.; Wang, H. L. Oligomer-assisted synthesis of chiral polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 2278–2279.

    CAS  Google Scholar 

  38. Tran, H. D.; Wang, Y.; D’Arcy, J. M.; Kaner, R. B. Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano 2008, 2, 1841–1848.

    CAS  Google Scholar 

  39. Wang, Y.; Tran, H. D.; Kaner, R. B. Applications of oligomers for nanostructured conducting polymers. Macromol. Rapid. Commun. 2011, 32, 35–49.

    Google Scholar 

  40. Luo, S. C.; Zhu, B.; Nakao, A.; Nakatomi, R.; Yu, H. H. Functionalized conducting polymer nano-networks from controlled oxidation polymerization toward cell engineering. Adv. Eng. Mater. 2011, 13, B423–B427.

    Google Scholar 

  41. Luo, S. C.; Sekine, J.; Zhu, B.; Zhao, H. C.; Nakao, A.; Yu, H. H. Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: The effect of functional groups and temperature in template-free electropolymerization. ACS Nano 2012, 6, 3018–3026.

    CAS  Google Scholar 

  42. Fifield, L. S.; Grate, J. W. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Carbon 2010, 48, 2085–2088.

    CAS  Google Scholar 

  43. Kong, L. T.; Wang, J.; Fu, X. C.; Zhong, Y.; Meng, F. L.; Luo, T.; Liu, J. H. p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents. Carbon 2010, 48, 1262–1270.

    CAS  Google Scholar 

  44. Alali, K. T.; Liu, J. Y.; Chen, R.; Liu, Q.; Zhang, H. S.; Li, J. D.; Hou, J. D.; Li, R. M.; Wang, J. HFIP-functionalized Co3O4 micro-nano-octahedra/rGO as a double-layer sensing material for chemical warfare agents. Chem.—Eur. J. 2019, 25, 11892–11902.

    Google Scholar 

  45. Wang, F.; Gu, H. W.; Swager, T. M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008, 130, 5392–5393.

    CAS  Google Scholar 

  46. Fennell, J. F.; Hamaguchi, H.; Yoon, B.; Swager, T. M. Chemiresistor devices for chemical warfare agent detection based on polymer wrapped single-walled carbon nanotubes. Sensors 2017, 17, 982.

    Google Scholar 

  47. Barlow, J. W.; Cassidy, P. E.; Lloyd, D. R.; You, C. J.; Chang, Y.; Wong, P. C.; Noriyan, J. Polymer sorbents for phosphorus esters: II. Hydrogen bond driven sorption in fluoro-carbinol substituted polystyrene. Polym. Eng. Sci. 1987, 27, 703–715.

    CAS  Google Scholar 

  48. Grate, J. W. Hydrogen-bond acidic polymers for chemical vapor sensing. Chem. Rev. 2008, 108, 726–745.

    CAS  Google Scholar 

  49. Zhu, R.; Azzarelli, J. M.; Swager, T. M. Wireless hazard badges to detect nerve-agent simulants. Angew. Chem., Int. Ed. 2016, 55, 9662–9666.

    CAS  Google Scholar 

  50. Garreau, S.; Louarn, G.; Buisson, J. P.; Froyer, G.; Lefrant, S. In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 1999, 32, 6807–6812.

    CAS  Google Scholar 

  51. Jalili, R.; Razal, J. M.; Innis, P. C.; Wallace, G. G. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv. Funct. Mater. 2011, 21, 3363–3370.

    CAS  Google Scholar 

  52. Duvail, J. L.; Rétho, P.; Garreau, S.; Louarn, G.; Godon, C.; Demoustier-Champagne, S. Transport and vibrational properties of poly(3,4-ethylenedioxythiophene) nanofibers. Synth. Met. 2002, 131, 123–128.

    CAS  Google Scholar 

  53. Alam, A. U.; Howlader, M. M. R.; Deen, M. J. Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding. ECS J. Solid State Sci. Technol. 2013, 2, P515–P523.

    CAS  Google Scholar 

  54. Alam, A. U.; Howlader, M. M. R.; Deen, M. J. The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass. J. Micromech. Microeng. 2014, 24, 035010.

    CAS  Google Scholar 

  55. Howlader, M. M. R.; Kibria, M. G.; Zhang, F.; Kim, M. J. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 °C. Talanta 2010, 82, 508–515.

    CAS  Google Scholar 

  56. Kibria, M. G.; Zhang, F.; Lee, T. H.; Kim, M. J.; Howlader, M. M. R. Comprehensive investigation of sequential plasma activated Si/Si bonded interfaces for nano-integration on the wafer scale. Nanotechnology 2010, 21, 134011.

    CAS  Google Scholar 

  57. Caesar, P. D.; Sachanen, A. N. Thiophene-formaldehyde condensation. Ind. Eng. Chem. 1948, 40, 922–928.

    CAS  Google Scholar 

  58. Wang, S. Q.; Zhou, L.; Long, L.; Dai, W.; Zhou, Y. P. Thiophene capture with silica gel loading formaldehyde and hydrochloric acid. Ind. Eng. Chem. Res. 2008, 47, 2356–2360.

    CAS  Google Scholar 

  59. Wang, J. Y.; Yang, L.; Xie, J. R.; Wang, Y. C.; Wang, T. J. Surface amination of silica nanoparticles using tris(hydroxymethyl) aminomethane. Ind. Eng. Chem. Res. 2020, 59, 21383–21392.

    CAS  Google Scholar 

  60. Conzone, S. D.; Pantano, C. G. Glass slides to DNA microarrays. Mater. Today 2004, 7, 20–26.

    CAS  Google Scholar 

  61. Abbas, S. S.; Rees, G. J.; Kelly, N. L.; Dancer, C. E. J.; Hanna, J. V.; McNally, T. Facile silane functionalization of graphene oxide. Nanoscale 2018, 10, 16231–16242.

    CAS  Google Scholar 

  62. Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20.

    CAS  Google Scholar 

  63. Mao, S.; Chang, J. B.; Pu, H. H.; Lu, G. H.; He, Q. Y.; Zhang, H.; Chen, J. H. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904.

    CAS  Google Scholar 

  64. Pei, Y. Y.; Zhang, X. L.; Hui, Z. Y.; Zhou, J. Y.; Huang, X.; Sun, G. Z.; Huang, W. Ti3C2Tx MXene for sensing applications: Recent progress, design principles, and future perspectives. ACS Nano 2021, 15, 3996–4017.

    CAS  Google Scholar 

  65. Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

    CAS  Google Scholar 

  66. Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 2013, 42, 4036–4053.

    CAS  Google Scholar 

  67. Hwang, H. M.; Hwang, E.; Kim, D.; Lee, H. Mesoporous non-stacked graphene-receptor sensor for detecting nerve agents. Sci. Rep. 2016, 6, 33299.

    CAS  Google Scholar 

  68. Clavaguera, S.; Carella, A.; Caillier, L.; Celle, C.; Pécaut, J.; Lenfant, S.; Vuillaume, D.; Simonato, J. P. Sub-ppm detection of nerve agents using chemically functionalized silicon nanoribbon field-effect transistors. Angew. Chem., Int. Ed. 2010, 49, 4063–4066.

    CAS  Google Scholar 

  69. Miranda, A.; De Santiago, F.; Pérez, L. A.; Cruz-Irisson, M. Silicon nanowires as potential gas sensors: A density functional study. Sensor. Actuat. B Chem. 2017, 242, 1246–1250.

    CAS  Google Scholar 

  70. Han, T.; Nag, A.; Mukhopadhyay, S. C.; Xu, Y. Z. Carbon nanotubes and its gas-sensing applications: A review. Sensor. Actuat. A Phys. 2019, 291, 107–143.

    CAS  Google Scholar 

  71. Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W. B.; Li, Y.; Su, B. L.; Hasan, T.; Huang, X.; Huang, W. Printed gas sensors. Chem. Soc. Rev. 2020, 49, 1756–1789.

    CAS  Google Scholar 

  72. Wang, S. R.; Kang, Y. F.; Wang, L. W.; Zhang, H. X.; Wang, Y. S.; Wang, Y. Organic/inorganic hybrid sensors: A review. Sensor. Actuat. B Chem. 2013, 182, 467–481.

    CAS  Google Scholar 

  73. Lichtenstein, A.; Havivi, E.; Shacham, R.; Hahamy, E.; Leibovich, R.; Pevzner, A.; Krivitsky, V.; Davivi, G.; Presman, I.; Elnathan, R. et al. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays. Nat. Commun. 2014, 5, 4195.

    CAS  Google Scholar 

  74. Potyrailo, R. A. Toward high value sensing: Monolayer-protected metal nanoparticles in multivariable gas and vapor sensors. Chem. Soc. Rev. 2017, 46, 5311–5346.

    CAS  Google Scholar 

  75. Fennell, F. J. Jr.; Liu, S. F.; Azzarelli, J. M.; Weis, J. G.; Rochat, S.; Mirica, K. A.; Ravnsbæk, J. B.; Swager, T. M. Nanowire chemical/biological sensors: Status and a roadmap for the future. Angew. Chem., Int. Ed. 2016, 55, 1266–1281.

    CAS  Google Scholar 

  76. Chandran, G. T.; Li, X. W.; Ogata, A.; Penner, R. M. Electrically transduced sensors based on nanomaterials (2012–2016). Anal. Chem. 2016, 89, 249–275.

    Google Scholar 

  77. Kickelbick, G. Introduction to hybrid materials. In Hybrid Materials: Synthesis, Characterization, and Applications; Kickelbick, G., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2006; pp 1–48.

    Google Scholar 

  78. Brillson, L. J.; Lu, Y. C. ZnO Schottky barriers and Ohmic contacts. J. Appl. Phys. 2011, 109, 121301.

    Google Scholar 

  79. Tang, C. G.; Ang, M. C. Y.; Choo, K. K.; Keerthi, V.; Tan, J. K.; Syafiqah, M. N.; Kugler, T.; Burroughes, J. H.; Png, R. Q.; Chua, L. L. et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature 2016, 539, 536–540.

    CAS  Google Scholar 

  80. Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24.

    CAS  Google Scholar 

  81. Zheng, Q.; Fu, Y. C.; Xu, J. Q. Advances in the chemical sensors for the detection of DMMP—A simulant for nerve agent sarin. Procedia Eng. 2010, 7, 179–184.

    CAS  Google Scholar 

  82. Leggett, D. C. Complex formation between dimethyl methylphosphonate and hexafluoroisopropanol. USA Cold Regions Research and Engineering Laboratory, Special Report, 1990.

  83. Bigiani, L.; Zappa, D.; Barreca, D.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Fois, E.; Comini, E.; Maccato, C. Sensing nitrogen mustard gas simulant at the ppb scale via selective dual-site activation at Au/Mn3O4 interfaces. ACS Appl. Mater. Interfaces 2019, 11, 23692–23700.

    CAS  Google Scholar 

  84. Wang, Y. Y.; Yang, M.; Liu, W. X.; Dong, L.; Chen, D.; Peng, C. S. Gas sensors based on assembled porous graphene multilayer frameworks for DMMP detection. J. Mater. Chem. C 2019, 7, 9248–9256.

    CAS  Google Scholar 

  85. Park, J.; Rautela, R.; Alzate-Carvajal, N.; Scarfe, S.; Scarfe, L.; Alarie, L.; Luican-Mayer, A.; Ménard, J. M. UV illumination as a method to improve the performance of gas sensors based on graphene field-effect transistors. ACS Sens. 2021, 6, 4417–4424.

    CAS  Google Scholar 

  86. Kulkarni, G. S.; Reddy, K.; Zhong, Z. H.; Fan, X. D. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 2014, 5, 4376.

    CAS  Google Scholar 

  87. Ishihara, S.; Azzarelli, J. M.; Krikorian, M.; Swager, T. M. Ultratrace detection of toxic chemicals: Triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 2016, 138, 8221–8227.

    CAS  Google Scholar 

  88. Saetia, K.; Schnorr, J. M.; Mannarino, M. M.; Kim, S. Y.; Rutledge, G. C.; Swager, T. M.; Hammond, P. T. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv. Funct. Mater. 2014, 24, 492–502.

    CAS  Google Scholar 

  89. Maccato, C.; Bigiani, L.; Carraro, G.; Gasparotto, A.; Sada, C.; Comini, E.; Barreca, D. Toward the detection of poisonous chemicals and warfare agents by functional Mn3O4 nanosystems. ACS Appl. Mater. Interfaces 2018, 10, 12305–12310.

    CAS  Google Scholar 

  90. Yoo, R.; Cho, S.; Song, M. J.; Lee, W. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant. Sensor. Actuat. B Chem. 2015, 221, 217–223.

    CAS  Google Scholar 

  91. Yoo, R.; Yoo, S.; Lee, D.; Kim, J.; Cho, S.; Lee, W. Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles/ZnO flowers heterojunction. Sensor. Actuat. B Chem. 2017, 240, 1099–1105.

    CAS  Google Scholar 

  92. Alzate-Carvajal, N.; Park, J.; Pykal, M.; Lazar, P.; Rautela, R.; Scarfe, S.; Scarfe, L.; Ménard, J. M.; Otyepka, M.; Luican-Mayer, A. Graphene field effect transistors: A sensitive platform for detecting sarin. ACS Appl. Mater. Interfaces 2021, 13, 61751–61757.

    CAS  Google Scholar 

  93. Song, S. G.; Ha, S.; Cho, H. J.; Lee, M.; Jung, D.; Han, J. H.; Song, C. Single-walled carbon-nanotube-based chemocapacitive sensors with molecular receptors for selective detection of chemical warfare agents. ACS Appl. Nano Mater. 2019, 2, 109–117.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jing Zhang for English editing and Shanghai Synchrotron Radiation Facility for supplying the BL14B1 beamline. B. Z. acknowledges financial support from the National Natural Science Foundation of China (Nos. 21474014 and 22175111). Z. G. thanks financial support from the National Natural Science Foundation of China (No. 21704013) and China Postdoctoral Science Foundation (No. 2017M611416). R. B. W. thanks for financial support from the National Postdoctoral Program for Innovative Talents (No. BX201700044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Geng, Yong He, Hongxing Zhang, Jinyi Ma or Bo Zhu.

Electronic Supplementary Material

12274_2022_5148_MOESM1_ESM.pdf

Solution-processed wafer-scale nanoassembly of conducting polymers enables selective ultratrace nerve agent detection at low power

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Weng, J., Geng, Z. et al. Solution-processed wafer-scale nanoassembly of conducting polymers enables selective ultratrace nerve agent detection at low power. Nano Res. 16, 5653–5664 (2023). https://doi.org/10.1007/s12274-022-5148-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5148-y

Keywords

Navigation