Abstract
There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power. Nanostructured conducting polymers have emerged as promising candidates for this technology due to their excellent stability with low redox potential, high conductivity, and selectivity endowed by chemical functionalization. However, it remains challenging to develop cost-effective and large-scale assembly approaches for functionalized conducting polymers in the practical fabrication of electronic devices. Here, we reported a straightforward wafer-scale assembly of nanostructured hexafluoroisopropanol functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-HFIP) on smooth substrates. This approach is template-free, solution-processed, and adaptable to conductive and nonconductive substrates. By this approach, the nanostructured PEDOT-HFIPs could be easily integrated onto interdigitated electrodes with intimate ohmic contact. At the optimized space-to-volume ratio, we demonstrated a low-power, sensitive, and selective nerve agent sensing technology using this platform by detecting sarin vapor with a limit of detection (LOD) of 10 ppb and signal strength of 400 times the water interference at the same concentration, offering significant advantages over existing similar technologies. We envision that its easy scale-up, micro size, small power consumption, and combination of high sensitivity and selectivity make it attractive for various wearable platforms.
Similar content being viewed by others
References
Lee, J. A.; Shin, M. K.; Kim, S. H.; Cho, H. U.; Spinks, G. M.; Wallace, G. G.; Lima, M. D.; Lepró, X.; Kozlov, M. E.; Baughman, R. H. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 2013, 4, 1970.
Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433.
Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 2000, 489, 17–27.
Gueye, M. N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J. P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616.
Fan, X.; Nie, W. Y.; Tsai, H.; Wang, N. X.; Huang, H. H.; Cheng, Y. J.; Wen, R. J.; Ma, L. J.; Yan, F.; Xia, Y. G. PEDOT:PSS for flexible and stretchable electronics: Modifications, strategies, and applications. Adv. Sci. 2019, 6, 1900813.
Worfolk, B. J.; Andrews, S. C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. N. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138–14143.
Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.
Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 2016, 7, 11287.
Zozoulenko, I.; Franco-Gonzalez, J. F.; Gueskine, V.; Mehandzhiyski, A.; Modarresi, M.; Rolland, N.; Tybrandt, K. Electronic, optical, morphological, transport, and electrochemical properties of PEDOT: A theoretical perspective. Macromolecules 2021, 54, 5915–5934.
Sandström, A.; Dam, H. F.; Krebs, F. C.; Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 2012, 3, 1002.
Lin, H. A.; Zhu, B.; Wu, Y. W.; Sekine, J.; Nakao, A.; Luo, S. C.; Yamashita, Y.; Yu, H. H. Dynamic poly(3,4-ethylenedioxythiophene)s integrate low impedance with redox-switchable biofunction. Adv. Funct. Mater. 2018, 28, 1703890.
Zhu, B.; Luo, S. C.; Zhao, H. C.; Lin, H. A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. H. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 2014, 5, 4523.
Luo, S. C.; Kantchev, E. A.; Zhu, B.; Siang, Y. W.; Yu, H. H. Tunable, dynamic and electrically stimulated lectin-carbohydrate recognition on a glycan-grafted conjugated polymer. Chem. Commun. 2012, 48, 6942–6944.
Hansen, T. S.; Daugaard, A. E.; Hvilsted, S.; Larsen, N. B. Spatially selective functionalization of conducting polymers by “electroclick” chemistry. Adv. Mater. 2009, 21, 4483–4486.
Jonsson, A.; Inal, S.; Uguz, I.; Williamson, A. J.; Kergoat, L.; Rivnay, J.; Khodagholy, D.; Berggren, M.; Bernard, C.; Malliaras, G. G. et al. Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proc. Natl. Acad. Sci. USA 2016, 113, 9440–9445.
Kozai, T. D. Y.; Langhals, N. B.; Patel, P. R.; Deng, X. P.; Zhang, H. N.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 2012, 11, 1065–1073.
Maya-Vetencourt, J. F.; Ghezzi, D.; Antognazza, M. R.; Colombo, E.; Mete, M.; Feyen, P.; Desii, A.; Buschiazzo, A.; Di Paolo, M.; Di Marco, S. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 2017, 16, 681–689.
Persson, K. M.; Lönnqvist, S.; Tybrandt, K.; Gabrielsson, R.; Nilsson, D.; Kratz, G.; Berggren, M. Matrix addressing of an electronic surface switch based on a conjugated polyelectrolyte for cell sorting. Adv. Funct. Mater. 2015, 25, 7056–7063.
Li, S. X.; Pei, Z. B.; Zhou, F.; Liu, Y.; Hu, H. B.; Ji, S. L.; Ye, C. H. Flexible Si/PEDOT:PSS hybrid solar cells. Nano Res. 2015, 8, 3141–3149.
Yang, Y. J.; Li, S. B.; Yang, W. Y.; Yuan, W. T.; Xu, J. H.; Jiang, Y. D. In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl. Mater. Interfaces 2014, 6, 13807–13814.
Jiang, Y.; Tang, N.; Zhou, C.; Han, Z. Y.; Qu, H. M.; Duan, X. X. A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 2018, 10, 20578–20586.
Wang, L.; Yue, X. P.; Sun, Q. Z.; Zhang, L. R.; Ren, G. Z.; Lu, G.; Yu, H. D.; Huang, W. Flexible organic electrochemical transistors for chemical and biological sensing. Nano Res. 2022, 15, 2433–2464.
Lee, J.; Han, T. H.; Park, M. H.; Jung, D. Y.; Seo, J.; Seo, H. K.; Cho, H.; Kim, E.; Chung, J.; Choi, S. Y. et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat. Commun. 2016, 7, 11791.
Li, Y. W.; Meng, L.; Yang, Y. M.; Xu, G. Y.; Hong, Z. R.; Chen, Q.; You, J. B.; Li, G.; Yang, Y.; Li, Y. F. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.
Le Ouay, B.; Boudot, M.; Kitao, T.; Yanagida, T.; Kitagawa, S.; Uemura, T. Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 2016, 138, 10088–10091.
Yang, G.; Kampstra, K. L.; Abidian, M. R. Highperformance conducting polymer nanofiber biosensors for detection of biomolecules. Adv. Mater. 2014, 26, 4954–4960.
Huang, T. Y.; Kung, C. W.; Liao, Y. T.; Kao, S. Y.; Cheng, M. S.; Chang, T. H.; Henzie, J.; Alamri, H. R.; Alothman, Z. A.; Yamauchi, Y. et al. Enhanced charge collection in MOF-525-PEDOT nanotube composites enable highly sensitive biosensing. Adv. Sci. 2017, 4, 1700261.
Yao, B. W.; Wang, H. Y.; Zhou, Q. Q.; Wu, M. M.; Zhang, M.; Li, C.; Shi, G. Q. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 2017, 29, 1700974.
Su, D. W.; Cortie, M.; Fan, H. B.; Wang, G. X. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700587.
Lin, Y. F.; Li, C. T.; Ho, K. C. A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells. J. Mater. Chem. A 2015, 4, 384–394.
Luo, S. C.; Yu, H. H.; Wan, A. C. A.; Han, Y.; Ying, J. Y. A general synthesis for PEDOT-coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization. Small 2008, 4, 2051–2058.
Kelly, T. L.; Yamada, Y.; Che, S. P. Y.; Yano, K.; Wolf, M. O. Monodisperse poly(3,4-ethylenedioxythiophene)-silica microspheres: Synthesis and assembly into crystalline colloidal arrays. Adv. Mater. 2008, 20, 2616–2621.
Xu, H.; Pang, X. C.; He, Y. J.; He, M.; Jung, J.; Xia, H. P.; Lin, Z. Q. An unconventional route to monodisperse and intimately contacted semiconducting organic-inorganic nanocomposites. Angew. Chem., Int. Ed. 2015, 54, 4636–4640.
Lin, H. A.; Luo, S. C.; Zhu, B.; Chen, C.; Yamashita, Y.; Yu, H. H. Molecular or nanoscale structures? The deciding factor of surface properties on functionalized poly(3,4-ethylenedioxythiophene) nanorod arrays. Adv. Funct. Mater. 2013, 23, 3212–3219.
Meng, L. Y.; Turner, A. P. F.; Mak, W. C. Tunable 3D nanofibrous and bio-functionalised PEDOT network explored as a conducting polymer-based biosensor. Biosens. Bioelectron. 2020, 159, 112181.
Ni, D.; Chen, Y. X.; Song, H. J.; Liu, C. C.; Yang, X. W.; Cai, K. F. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 2019, 7, 1323–1333.
Li, W. G.; Wang, H. L. Oligomer-assisted synthesis of chiral polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 2278–2279.
Tran, H. D.; Wang, Y.; D’Arcy, J. M.; Kaner, R. B. Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano 2008, 2, 1841–1848.
Wang, Y.; Tran, H. D.; Kaner, R. B. Applications of oligomers for nanostructured conducting polymers. Macromol. Rapid. Commun. 2011, 32, 35–49.
Luo, S. C.; Zhu, B.; Nakao, A.; Nakatomi, R.; Yu, H. H. Functionalized conducting polymer nano-networks from controlled oxidation polymerization toward cell engineering. Adv. Eng. Mater. 2011, 13, B423–B427.
Luo, S. C.; Sekine, J.; Zhu, B.; Zhao, H. C.; Nakao, A.; Yu, H. H. Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: The effect of functional groups and temperature in template-free electropolymerization. ACS Nano 2012, 6, 3018–3026.
Fifield, L. S.; Grate, J. W. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Carbon 2010, 48, 2085–2088.
Kong, L. T.; Wang, J.; Fu, X. C.; Zhong, Y.; Meng, F. L.; Luo, T.; Liu, J. H. p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents. Carbon 2010, 48, 1262–1270.
Alali, K. T.; Liu, J. Y.; Chen, R.; Liu, Q.; Zhang, H. S.; Li, J. D.; Hou, J. D.; Li, R. M.; Wang, J. HFIP-functionalized Co3O4 micro-nano-octahedra/rGO as a double-layer sensing material for chemical warfare agents. Chem.—Eur. J. 2019, 25, 11892–11902.
Wang, F.; Gu, H. W.; Swager, T. M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008, 130, 5392–5393.
Fennell, J. F.; Hamaguchi, H.; Yoon, B.; Swager, T. M. Chemiresistor devices for chemical warfare agent detection based on polymer wrapped single-walled carbon nanotubes. Sensors 2017, 17, 982.
Barlow, J. W.; Cassidy, P. E.; Lloyd, D. R.; You, C. J.; Chang, Y.; Wong, P. C.; Noriyan, J. Polymer sorbents for phosphorus esters: II. Hydrogen bond driven sorption in fluoro-carbinol substituted polystyrene. Polym. Eng. Sci. 1987, 27, 703–715.
Grate, J. W. Hydrogen-bond acidic polymers for chemical vapor sensing. Chem. Rev. 2008, 108, 726–745.
Zhu, R.; Azzarelli, J. M.; Swager, T. M. Wireless hazard badges to detect nerve-agent simulants. Angew. Chem., Int. Ed. 2016, 55, 9662–9666.
Garreau, S.; Louarn, G.; Buisson, J. P.; Froyer, G.; Lefrant, S. In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 1999, 32, 6807–6812.
Jalili, R.; Razal, J. M.; Innis, P. C.; Wallace, G. G. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv. Funct. Mater. 2011, 21, 3363–3370.
Duvail, J. L.; Rétho, P.; Garreau, S.; Louarn, G.; Godon, C.; Demoustier-Champagne, S. Transport and vibrational properties of poly(3,4-ethylenedioxythiophene) nanofibers. Synth. Met. 2002, 131, 123–128.
Alam, A. U.; Howlader, M. M. R.; Deen, M. J. Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding. ECS J. Solid State Sci. Technol. 2013, 2, P515–P523.
Alam, A. U.; Howlader, M. M. R.; Deen, M. J. The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass. J. Micromech. Microeng. 2014, 24, 035010.
Howlader, M. M. R.; Kibria, M. G.; Zhang, F.; Kim, M. J. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 °C. Talanta 2010, 82, 508–515.
Kibria, M. G.; Zhang, F.; Lee, T. H.; Kim, M. J.; Howlader, M. M. R. Comprehensive investigation of sequential plasma activated Si/Si bonded interfaces for nano-integration on the wafer scale. Nanotechnology 2010, 21, 134011.
Caesar, P. D.; Sachanen, A. N. Thiophene-formaldehyde condensation. Ind. Eng. Chem. 1948, 40, 922–928.
Wang, S. Q.; Zhou, L.; Long, L.; Dai, W.; Zhou, Y. P. Thiophene capture with silica gel loading formaldehyde and hydrochloric acid. Ind. Eng. Chem. Res. 2008, 47, 2356–2360.
Wang, J. Y.; Yang, L.; Xie, J. R.; Wang, Y. C.; Wang, T. J. Surface amination of silica nanoparticles using tris(hydroxymethyl) aminomethane. Ind. Eng. Chem. Res. 2020, 59, 21383–21392.
Conzone, S. D.; Pantano, C. G. Glass slides to DNA microarrays. Mater. Today 2004, 7, 20–26.
Abbas, S. S.; Rees, G. J.; Kelly, N. L.; Dancer, C. E. J.; Hanna, J. V.; McNally, T. Facile silane functionalization of graphene oxide. Nanoscale 2018, 10, 16231–16242.
Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20.
Mao, S.; Chang, J. B.; Pu, H. H.; Lu, G. H.; He, Q. Y.; Zhang, H.; Chen, J. H. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904.
Pei, Y. Y.; Zhang, X. L.; Hui, Z. Y.; Zhou, J. Y.; Huang, X.; Sun, G. Z.; Huang, W. Ti3C2Tx MXene for sensing applications: Recent progress, design principles, and future perspectives. ACS Nano 2021, 15, 3996–4017.
Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.
Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 2013, 42, 4036–4053.
Hwang, H. M.; Hwang, E.; Kim, D.; Lee, H. Mesoporous non-stacked graphene-receptor sensor for detecting nerve agents. Sci. Rep. 2016, 6, 33299.
Clavaguera, S.; Carella, A.; Caillier, L.; Celle, C.; Pécaut, J.; Lenfant, S.; Vuillaume, D.; Simonato, J. P. Sub-ppm detection of nerve agents using chemically functionalized silicon nanoribbon field-effect transistors. Angew. Chem., Int. Ed. 2010, 49, 4063–4066.
Miranda, A.; De Santiago, F.; Pérez, L. A.; Cruz-Irisson, M. Silicon nanowires as potential gas sensors: A density functional study. Sensor. Actuat. B Chem. 2017, 242, 1246–1250.
Han, T.; Nag, A.; Mukhopadhyay, S. C.; Xu, Y. Z. Carbon nanotubes and its gas-sensing applications: A review. Sensor. Actuat. A Phys. 2019, 291, 107–143.
Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W. B.; Li, Y.; Su, B. L.; Hasan, T.; Huang, X.; Huang, W. Printed gas sensors. Chem. Soc. Rev. 2020, 49, 1756–1789.
Wang, S. R.; Kang, Y. F.; Wang, L. W.; Zhang, H. X.; Wang, Y. S.; Wang, Y. Organic/inorganic hybrid sensors: A review. Sensor. Actuat. B Chem. 2013, 182, 467–481.
Lichtenstein, A.; Havivi, E.; Shacham, R.; Hahamy, E.; Leibovich, R.; Pevzner, A.; Krivitsky, V.; Davivi, G.; Presman, I.; Elnathan, R. et al. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays. Nat. Commun. 2014, 5, 4195.
Potyrailo, R. A. Toward high value sensing: Monolayer-protected metal nanoparticles in multivariable gas and vapor sensors. Chem. Soc. Rev. 2017, 46, 5311–5346.
Fennell, F. J. Jr.; Liu, S. F.; Azzarelli, J. M.; Weis, J. G.; Rochat, S.; Mirica, K. A.; Ravnsbæk, J. B.; Swager, T. M. Nanowire chemical/biological sensors: Status and a roadmap for the future. Angew. Chem., Int. Ed. 2016, 55, 1266–1281.
Chandran, G. T.; Li, X. W.; Ogata, A.; Penner, R. M. Electrically transduced sensors based on nanomaterials (2012–2016). Anal. Chem. 2016, 89, 249–275.
Kickelbick, G. Introduction to hybrid materials. In Hybrid Materials: Synthesis, Characterization, and Applications; Kickelbick, G., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2006; pp 1–48.
Brillson, L. J.; Lu, Y. C. ZnO Schottky barriers and Ohmic contacts. J. Appl. Phys. 2011, 109, 121301.
Tang, C. G.; Ang, M. C. Y.; Choo, K. K.; Keerthi, V.; Tan, J. K.; Syafiqah, M. N.; Kugler, T.; Burroughes, J. H.; Png, R. Q.; Chua, L. L. et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature 2016, 539, 536–540.
Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24.
Zheng, Q.; Fu, Y. C.; Xu, J. Q. Advances in the chemical sensors for the detection of DMMP—A simulant for nerve agent sarin. Procedia Eng. 2010, 7, 179–184.
Leggett, D. C. Complex formation between dimethyl methylphosphonate and hexafluoroisopropanol. USA Cold Regions Research and Engineering Laboratory, Special Report, 1990.
Bigiani, L.; Zappa, D.; Barreca, D.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Fois, E.; Comini, E.; Maccato, C. Sensing nitrogen mustard gas simulant at the ppb scale via selective dual-site activation at Au/Mn3O4 interfaces. ACS Appl. Mater. Interfaces 2019, 11, 23692–23700.
Wang, Y. Y.; Yang, M.; Liu, W. X.; Dong, L.; Chen, D.; Peng, C. S. Gas sensors based on assembled porous graphene multilayer frameworks for DMMP detection. J. Mater. Chem. C 2019, 7, 9248–9256.
Park, J.; Rautela, R.; Alzate-Carvajal, N.; Scarfe, S.; Scarfe, L.; Alarie, L.; Luican-Mayer, A.; Ménard, J. M. UV illumination as a method to improve the performance of gas sensors based on graphene field-effect transistors. ACS Sens. 2021, 6, 4417–4424.
Kulkarni, G. S.; Reddy, K.; Zhong, Z. H.; Fan, X. D. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 2014, 5, 4376.
Ishihara, S.; Azzarelli, J. M.; Krikorian, M.; Swager, T. M. Ultratrace detection of toxic chemicals: Triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 2016, 138, 8221–8227.
Saetia, K.; Schnorr, J. M.; Mannarino, M. M.; Kim, S. Y.; Rutledge, G. C.; Swager, T. M.; Hammond, P. T. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv. Funct. Mater. 2014, 24, 492–502.
Maccato, C.; Bigiani, L.; Carraro, G.; Gasparotto, A.; Sada, C.; Comini, E.; Barreca, D. Toward the detection of poisonous chemicals and warfare agents by functional Mn3O4 nanosystems. ACS Appl. Mater. Interfaces 2018, 10, 12305–12310.
Yoo, R.; Cho, S.; Song, M. J.; Lee, W. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant. Sensor. Actuat. B Chem. 2015, 221, 217–223.
Yoo, R.; Yoo, S.; Lee, D.; Kim, J.; Cho, S.; Lee, W. Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles/ZnO flowers heterojunction. Sensor. Actuat. B Chem. 2017, 240, 1099–1105.
Alzate-Carvajal, N.; Park, J.; Pykal, M.; Lazar, P.; Rautela, R.; Scarfe, S.; Scarfe, L.; Ménard, J. M.; Otyepka, M.; Luican-Mayer, A. Graphene field effect transistors: A sensitive platform for detecting sarin. ACS Appl. Mater. Interfaces 2021, 13, 61751–61757.
Song, S. G.; Ha, S.; Cho, H. J.; Lee, M.; Jung, D.; Han, J. H.; Song, C. Single-walled carbon-nanotube-based chemocapacitive sensors with molecular receptors for selective detection of chemical warfare agents. ACS Appl. Nano Mater. 2019, 2, 109–117.
Acknowledgements
We would like to thank Dr. Jing Zhang for English editing and Shanghai Synchrotron Radiation Facility for supplying the BL14B1 beamline. B. Z. acknowledges financial support from the National Natural Science Foundation of China (Nos. 21474014 and 22175111). Z. G. thanks financial support from the National Natural Science Foundation of China (No. 21704013) and China Postdoctoral Science Foundation (No. 2017M611416). R. B. W. thanks for financial support from the National Postdoctoral Program for Innovative Talents (No. BX201700044).
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
12274_2022_5148_MOESM1_ESM.pdf
Solution-processed wafer-scale nanoassembly of conducting polymers enables selective ultratrace nerve agent detection at low power
Rights and permissions
About this article
Cite this article
Luo, B., Weng, J., Geng, Z. et al. Solution-processed wafer-scale nanoassembly of conducting polymers enables selective ultratrace nerve agent detection at low power. Nano Res. 16, 5653–5664 (2023). https://doi.org/10.1007/s12274-022-5148-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-022-5148-y