Abstract
The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light–matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£169.00 per year
only £14.08 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
05 March 2010
In all versions of this Review originally published, the upper part of Fig. 2c was incorrect. This error has been corrected in the PDF and HTML versions of this Review.
References
Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).
Wang, F. & Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).
Stockman, M. I., Shalaev, V. M., Moskovits, M., Botet, R. & George, T. F. Enhanced Raman scattering by fractal clusters: Scale-invariant theory. Phys. Rev. B. 46, 2821–2830 (1992).
Li, K. R., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).
Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).
Bryant, G., Garcia de Abajo, F. J. & Aizpurua, J. Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008).
Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).
Søndergaard, T. & Bozhevolnyi, S. I. Slow-plasmon resonant nanostructures: Scattering and field enhancements. Phys. Rev. B 75, 073402 (2007).
Søndergaard, T. & Bozhevolnyi, S. I. Metal nano-strip optical resonators. Opt. Express 15, 4198–4204 (2007).
Barnard, E. S., White, J. S., Chandran, A. & Brongersma, M. L. Spectral properties of plasmonic resonator antennas. Opt. Express 16, 16529–16537 (2008).
Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).
Thio, T., Pellerin, K. M., Linke, R. A., Lezec, H. J. & Ebbesen, T. W. Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26, 1972–1974 (2001).
Ditlbacher, H., Krenn, J. R., Hohenau, A., Leitner, A. & Aussenegg, F. R. Efficiency of local light-plasmon coupling. Appl. Phys. Lett. 83, 3665–3667 (2003).
Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).
Gersten, J. & Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73, 3023–3037 (1980).
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).
Verhagen, E., Spasenovic, M., Polman, A. & Kuipers, L. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2009).
Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).
Shi, X. & Hesselink, L. Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage. Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers Phys. Rev. Lett. 79, 645–648 (1997).
Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).
Srituravanich, W. et al. Flying plasmonic lens in the near-field for high-speed nanolithography. Nature Nanotech. 3, 733–737 (2008).
Huber, A. J. et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).
Hartschuh, A., Sanchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).
Frey, H., Witt, S., Felderer, K. & Guckenberger, R. High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett. 93, 200801 (2004).
Kalkbrenner, T., Ramstein, M., Mlynek, J. & Sandoghar, V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001).
Farahani, J. N., Pohl, D. W., Eisler, H. J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).
Taminiau, T. H. et al. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).
Barwicz, T. et al. Silicon photonics for compact, energy-efficient interconnects [Invited]. J. Opt. Netw. 6, 63–73 (2007).
White, J. S. et al. Extra-ordinary optical absorption through sub-wavelength slits. Opt. Lett. 34, 686–688 (2009).
Ishi, T., Fujikata, T., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44, 364–366 (2005).
Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).
Ditlbacher, H. et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).
Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nature Photon. 3, 283–286 (2009).
Ly-Gagnon, D. S., Kocabas, S. E. & Miller, D. A. B. Characteristic impedance model for plasmonic metal slot waveguides. IEEE J. Quantum Electron. 14, 1473–1478 (2008).
Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon. 2, 161–164 (2008).
Nikolajsen, T., Leosson, K. & Bozhevolnyi, S. I. Surface plasmon polariton modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004).
Cai, W., White, J. S. & Brongersma, M. L. High-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403–4411 (2009).
Krasavin, A. V. & Zheludev, N. I. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscalestructural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).
Dintinger, J., Robel, I., Kamat, P. V., Genet, C. & Ebbesen, T. W. Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18, 1645–1648 (2006).
Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).
Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).
Dicken, M. J. et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).
MacDonald, K. F., Sámson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).
Shen, Y. & Wang, G. P. Optical bistability in metal gap waveguide nanocavities. Opt. Express 16, 8421–8426 (2008).
Green, M. A. Recent developments in photovoltaics. Sol Energy 76, 3–8 (2004).
Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).
Kume, T. et al. Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons. Jpn. J. Appl. Phys. 34, 6448–6451 (1995).
Stenzel, O. et al. Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Sol. Energy Mater. Sol. Cells 37, 337–348 (1995).
Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).
Catchpole, K. R. & Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008).
Nitzan, A. & Brus, L. E. Theoretical model for enhanced photochemistry on rough surfaces. J. Chem. Phys. 75, 2205–2214 (1981).
Chen, C. J. & Osgood, R. M. Direct observation of the local-field-enhanced surface photochemical reactions Phys. Rev. Lett. 50, 1705–1708 (1983).
Shimizu, K. T., Pala, R. A., Fabbri, J. D., Brongersma, M. L. & Melosh, N. A. Probing molecular junctions using surface plasmon resonance spectroscopy. Nano Lett. 6, 2797–2803 (2006).
Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotech. 3, 598–602 (2008).
Baffou, G., Quidant, R. & Girard, C. Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).
Baffou, G., Kreuzer, M. P., Kulzer, F. & Quidant, R. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009).
Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).
Rontzsch, L., Heinig, K. H., Schuller, J. A. & Brongersma, M. L. Thin film patterning by surface-plasmon-induced thermocapillarity. Appl. Phys. Lett. 90, 044105 (2007).
Govorov, A. O. et al. Gold nanoparticles ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006).
Soares, B. F., Jonsson, F. & Zheludev, N. I. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).
Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).
Boyd, D. A., Adleman, J. R., Goodwin, D. G. & Psaltis, D. Chemical separations by bubble-assisted interphase mass-transfer. Anal. Chem. 80, 2452–2456 (2008).
Sershen, S. R., Wescott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. A 51, 293–298 (2000).
Reismann, M., Bretschneider, J. C., von Plessen, G. & Simon, U. Reversible photothermal melting of DNA in DNA-gold-nanoparticle networks. Small 4, 607–610 (2008).
Stehr, J. et al. Gold nanostoves for microsecond DNA melting analysis. Nano Lett. 8, 619–623 (2008).
Simon, H. J., Mitchell, D. E. & Watson, J. G. Optical second-harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974).
Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003).
Lesuffleur, A., Kumar, L. & Gordon, R. Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film. Appl. Phys. Lett. 88, 261104 (2006).
Van Nieuwstadt, J. A. H. et al. Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. Phys. Rev. Lett. 97, 146102 (2006).
Xu, T., Jiao, X., Zhang, G.-P. & Blair, S. Second-harmonic emission from subwavelength apertures: Effects of aperture symmetry and lattice arrangement. Opt. Express 15, 13894–13906 (2007).
Fan, W. et al. Second harmonic generation from a nanopatterned isotropic nonlinear material. Nano Lett. 6, 1027–1030 (2006).
Fan, W. et al. Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array. Opt. Express 14, 9570–9575 (2006).
Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).
Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).
Kuhn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).
Muskens, O. L. et al. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7, 2871–2875 (2007).
Mertens, H., Koenderink, A. F. & Polman, A. Plasmon-enhanced luminsecence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys. Rev. B 76, 115123 (2007).
Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).
Wenger, J. et al. Emission and excitation contributions to enhance single molecule fluorescence by gold nanometric apertures. Opt. Express 16, 3008–3020 (2008).
Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
Neogi, A. et al. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002).
Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).
Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).
Chang, D. E., Sorensen, A. S., Haemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).
Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).
Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).
Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).
Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2010).
Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
Stockman, M. I. Spasers explained. Nature Photon. 2, 327–329 (2008).
Noginov, M. A. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
Puscasu, I. & Schaich, W. L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl. Phys. Lett. 92, 233102 (2008).
Miyazaki, H. T. et al. Thermal emission of two-colour polarized infrared waves from integrated plasmon cavities. Appl. Phys. Lett. 92, 141114 (2008).
Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).
Au, Y. Y. Thermal radiation spectra of individual subwavelength microheaters. Phys. Rev. B 78, 085402 (2008).
Marquier, F. et al. Engineering infrared emission properties of silicon in the near and far field. Opt. Commun. 237, 379–388 (2004).
Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).
Shchegrov, A. V., Joulain, K., Carminati, R. & Greffet, J. J. Near-field spectral effects due to electromagnetic surface excitations. Phys. Rev. Lett. 85, 1548–1551 (2000).
Wilde, Y. D. et al. Thermal radiation scanning tunneling microscopy. Nature 444, 740–743 (2006).
Volokitin, A. I. & Persson, B. N. J. Near-field radiative heat transfer and non-contact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).
Mulet, J. P., Joulain, K., Carminati, R. & Greffet, J. J. Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78, 2931–2933 (2001).
Kittel, A. et al. Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett. 95, 224301 (2005).
Cai, W. S. et al. Metamagnetics with rainbow colours. Opt. Express 15, 3333–3341 (2007).
Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).
Plum, E. et al. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 90, 223113 (2007).
Ward, A. J. & Pendry, J. B. Refraction and geometry in Maxwell's equations. J. Mod. Opt. 43, 773–793 (1996).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).
Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
Cai, W. S., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).
Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).
Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations. Photonic. Nanostruct. 6, 87–95 (2008).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley Inter-Science, 1998).
Verhagen, E., Polman, A. & Kuipers, L. K. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008).
Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).
Schurig, D., Pendry, J. B. & Smith, D. R. Calculation of material properties and ray tracing in transformation media. Opt. Express. 14, 9794–9804 (2006).
Cai, W. S. et al. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 91, 111105 (2007).
Acknowledgements
The authors of this article would like to acknowledge support from a US Department of Defense Multidisciplinary University Research Initiative sponsored by the Air Force Office of Scientific Research (F49550-04-1-0437). The authors also thank the Centre on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001060.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Schuller, J., Barnard, E., Cai, W. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater 9, 193–204 (2010). https://doi.org/10.1038/nmat2630
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2630
This article is cited by
-
Electron beam lithography on nonplanar and irregular surfaces
Microsystems & Nanoengineering (2024)
-
Localized surface plasmon resonance sensing of Trenbolone acetate dopant using silver nanoparticles
Scientific Reports (2024)
-
A Comprehensive Survey of Silicon Thin-film Solar Cell: Challenges and Novel Trends
Plasmonics (2024)
-
Kerr nonlinear effect in the graphene-based wedged hybrid plasmonic waveguide
Optical and Quantum Electronics (2024)
-
Deposition of hydrophilic Ti3C2Tx on a superhydrophobic ZnO nanorod array for improved surface-enhanced raman scattering performance
Journal of Nanobiotechnology (2023)