Abstract
Nanophotonics offers opportunities for engineering and exploiting the quantum properties of light by integrating quantum emitters into nanostructures, and offering reliable paths to quantum technology applications such as sources of quantum light or new quantum simulators, among many others. In this Review, we discuss common nanophotonic platforms for studying light–matter interactions, explaining their strengths and experimental state-of-the-art. Each platform works at a different interaction regime: from standard cavity quantum electrodynamics (QED) setups to unique quantum nanophotonic devices, such as chiral and non-chiral waveguide QED experiments. When several quantum emitters are integrated into nanophotonic systems, collective interactions emerge, enabling miniaturized, versatile and fast-operating quantum devices. We conclude with a perspective on the near-term opportunities offered by nanophotonics in the context of quantum technologies.
Key points
-
Nanophotonics is the field that studies how to control the properties of light at the nanoscale.
-
It began in the late 1980s with the discovery of photonic crystals, followed by subsequent waves that harnessed metals and metamaterials to engineer unique photon flows at the (semi)classical level.
-
Current experimental efforts aim at integrating these setups with natural and artificial atoms to control the light properties at the quantum level.
-
Apart from reducing the mode volume of light and thus enhancing light–matter interactions, nanophotonic setups allow the exploration of new regimes that exploit non-trivial energy dispersions and polarization patterns.
-
Quantum nanophotonics creates unique opportunities to develop a new generation of miniaturized, versatile and fast-operating quantum technologies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£79.00 per year
only £6.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).
Reiserer, A. Colloquium: Cavity-enhanced quantum network nodes. Rev. Mod. Phys. 94, 041003 (2022).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).
Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222 (2011).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Grimsmo, A. L. & Puri, S. Quantum error correction with the Gottesman–Kitaev–Preskill code. PRX Quantum 2, 020101 (2021).
Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19 (2009).
Haroche, S. Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).
Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).
Saffman, M., Walker, T. G. & Mölmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).
Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).
Dzsotjan, D., Sørensen, A. S. & Fleischhauer, M. Quantum emitters coupled to surface plasmons of a nanowire: a Green’s function approach. Phys. Rev. B 82, 75427 (2010).
Gonzalez-Tudela, A. et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides.Phys. Rev. Lett. 106, 020501 (2011).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 15006 (2019).
Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon–photon correlations. Rev. Mod. Phys. 95, 015002 (2023).
Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).
Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).
Bradac, C., Gao, W., Forneris, J., Trusheim, M. E. & Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 10, 5625 (2019).
Castelletto, S. & Boretti, A. Silicon carbide color centers for quantum applications. J. Phys. Photonics 2, 022001 (2020).
Gritsch, A., Weiss, L., Früh, J., Rinner, S. & Reiserer, A. Narrow optical transitions in erbium-implanted silicon waveguides. Phys. Rev. X 12, 041009 (2022).
Durand, A. et al. Broad diversity of near-infrared single-photon emitters in silicon. Phys. Rev. Lett. 126, 083602 (2021).
Zhong, T. & Goldner, P. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8, 2003–2015 (2019).
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).
Reserbat-Plantey, A. et al. Quantum nanophotonics in two-dimensional materials. ACS Photonics 8, 85–101 (2021).
Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).
Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).
Goban, A. et al. Atom–light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014).
Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).
Béguin, J.-B. et al. Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice. Phys. Rev. Lett. 113, 263603 (2014).
Solano, P., Barberis-Blostein, P., Fatemi, F. K., Orozco, L. A. & Rolston, S. L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).
Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).
Goban, A. et al. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett. 109, 33603 (2012).
Corzo, N. V. et al. Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett. 117, 133603 (2016).
Sørensen, H. L. et al. Coherent backscattering of light off one-dimensional atomic strings. Phys. Rev. Lett. 117, 133604 (2016).
Corzo, N. V. et al. Waveguide-coupled single collective excitation of atomic arrays. Nature 566, 359–362 (2019).
Bouscal, A. et al. Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms. Preprint at https://arxiv.org/abs/2301.04675v1 (2023).
Fayard, N. et al. Asymmetric comb waveguide for strong interactions between atoms and light. Preprint at https://arxiv.org/abs/2201.02507v1 (2022).
Beguin, J. B. et al. Reduced volume and reflection for bright optical tweezers with radial Laguerre–Gauss beams. Proc. Natl Acad. Sci. USA 117, 26109–26117 (2020).
Zhou, X., Tamura, H., Chang, T.-H. & Hung, C.-L. Coupling single atoms to a nanophotonic whispering-gallery-mode resonator via optical guiding. Phys. Rev. Lett. 130, 103601 (2023).
Samutpraphoot, P. et al. Strong coupling of two individually controlled atoms via a nanophotonic cavity. Phys. Rev. Lett. 124, 063602 (2020).
Dordevic, T. et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science 373, 1511–1514 (2021).
Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).
Barredo, D. et al. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).
Barredo, D., De Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Menon, S. G., Glachman, N., Pompili, M., Dibos, A. & Bernien, H. An integrated atom array–nanophotonic chip platform with background-free imaging. Preprint at https://arxiv.org/abs/2311.02153 (2023).
Zhou, X., Tamura, H., Chang, T.-H. & Hung, C.-L. Trapped atoms and superradiance on an integrated nanophotonic microring circuit. Preprint at https://arxiv.org/abs/2312.14318 (2023).
Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).
Ourari, S. et al. Indistinguishable telecom band photons from a single erbium ion in the solid state. Nature 620, 977–981 (2023).
Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).
Santori, C., Fattal, D., Vukovick, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).
Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).
Faez, S., Türschmann, P., Haakh, H. R., Götzinger, S. & Sandoghdar, V. Coherent interaction of light and single molecules in a dielectric nanoguide. Phys. Rev. Lett. 113, 213601 (2014).
Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).
Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).
Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).
Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 4, 87 (1932).
Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions (Wiley, 1998).
Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).
Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 11014 (2012).
Weiss, L., Gritsch, A., Merkel, B. & Reiserer, A. Erbium dopants in nanophotonic silicon waveguides. Optica 8, 40–41 (2021).
Robinson, J. T., Manolatou, C., Chen, L. & Lipson, M. Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett. 95, 143901 (2005).
Hu, S. et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci. Adv. 4, eaat2355 (2018).
Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).
Chang, W.-H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).
Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons.Nature 3, 807–812 (2007).
Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127 (2016).
Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).
Kelkar, H. et al. Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume. Phys. Rev. Appl. 4, 054010 (2015).
Wang, D. et al. Coherent coupling of a single molecule to a scanning Fabry–Perot microcavity. Phys. Rev. X 7, 021014 (2017).
Shlesinger, I., Vandersmissen, J., Oksenberg, E., Verhagen, E. & Koenderink, A. F. Hybrid cavity-antenna architecture for strong and tunable sideband-selective molecular Raman scattering enhancement. Preprint at https://arxiv.org/abs/2306.17286v1 (2023).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968).
Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).
Patti, T. L., Wild, D. S., Shahmoon, E., Lukin, M. D. & Yelin, S. F. Controlling interactions between quantum emitters using atom arrays. Phys. Rev. Lett. 126, 223602 (2021).
Fernández-Fernández, D. & González-Tudela, A. Tunable directional emission and collective dissipation with quantum metasurfaces. Phys. Rev. Lett. 128, 113601 (2022).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 13904 (2008).
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772 (2009).
Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore–picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).
Andersen, M. L., Stobbe, S., Sorensen, A. S. & Lodahl, P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat. Phys. 7, 215–218 (2011).
Pscherer, A. et al. Single-molecule vacuum Rabi splitting: four-wave mixing and optical switching at the single-photon level. Phys. Rev. Lett. 127, 133603 (2021).
Jaynes, E. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).
Gérard, J.-M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110 (1998).
Bayer, M. et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett. 86, 3168 (2001).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).
Knall, E. N. et al. Efficient source of shaped single photons based on an integrated diamond nanophotonic system. Phys. Rev. Lett. 129, 053603 (2022).
Wein, S. C. et al. Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photon. 16, 374–379 (2022).
Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).
Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).
Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).
Sun, S., Kim, H., Solomon, G. S. & Waks, E. A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotechnol. 11, 539–544 (2016).
Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197 (2004).
Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).
Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 67401 (2005).
Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).
Muñoz, C. S. et al. Emitters of N-photon bundles. Nat. Photon. 8, 550–555 (2014).
Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).
Rugar, A. E. et al. Quantum photonic interface for tin-vacancy centers in diamond. Phys. Rev. X 11, 031021 (2021).
Kuruma, K. et al. Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond. Appl. Phys. Lett. 118, 230601 (2021).
Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).
Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).
Akimov, I. A., Andrews, J. T. & Henneberger, F. Stimulated emission from the biexciton in a single self-assembled {II-VI} quantum dot. Phys. Rev. Lett. 96, 67401 (2006).
Bermúdez-Ureña, E. et al. Coupling of individual quantum emitters to channel plasmons. Nat. Commun. 6, 7883 (2015).
Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).
Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021).
Østfeldt, F. T. et al. On-demand source of dual-rail photon pairs based on chiral interaction in a nanophotonic waveguide. PRX Quantum 3, 020363 (2022).
Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun. 5, 5713 (2014).
Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 41036 (2015).
Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).
Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).
Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).
Schrinski, B., Lamaison, M. & Sørensen, A. S. Passive quantum phase gate for photons based on three level emitters. Phys. Rev. Lett. 129, 130502 (2022).
Skirlo, S. A., Lu, L. & Soljačić, M. Multimode one-way waveguides of large Chern numbers. Phys. Rev. Lett. 113, 113904 (2014).
Skirlo, S. A. et al. Experimental observation of large Chern numbers in photonic crystals. Phys. Rev. Lett. 115, 253901 (2015).
Vega, C., Porras, D. & González-Tudela, A. Topological multimode waveguide QED. Phys. Rev. Res. 5, 023031 (2023).
Hood, J. D. et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc. Natl Acad. Sci. USA 113, 10507–10512 (2016).
John, S. & Quang, T. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A 50, 1764–1769 (1994).
Bykov, V. P. Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861 (1975).
Kurizki, G. Two-atom resonant radiative coupling in photonic band structures. Phys. Rev. A 42, 2915–2924 (1990).
John, S. & Wang, J. Quantum optics of localized light in a photonic band gap. Phys. Rev. B 43, 12772–12789 (1991).
Shahmoon, E., Grišins, P., Stimming, H. P., Mazets, I. & Kurizki, G. Highly nonlocal optical nonlinearities in atoms trapped near a waveguide. Optica 3, 725–733 (2016).
Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).
González-Tudela, A., Hung, C.-L., Chang, D. E., Cirac, J. I. & Kimble, H. J. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nat. Photon. 9, 320–325 (2015).
González-Tudela, A. & Cirac, J. Exotic quantum dynamics and purely long-range coherent interactions in Dirac conelike baths.Phys. Rev. A 97, 043831 (2018).
Perczel, J. & Lukin, M. D. Theory of dipole radiation near a Dirac photonic crystal. Phys. Rev. A 101, 033822 (2020).
Navarro-Barón, E. P., Vinck-Posada, H. & González-Tudela, A. Photon-mediated interactions near a Dirac photonic crystal slab. ACS Photonics 8, 3209–3217 (2021).
Hung, C.-L., González-Tudela, A., Cirac, J. I. & Kimble, H. J. Quantum spin dynamics with pairwise-tunable, long-range interactions. Proc. Natl Acad. Sci. USA 113, E4946–E4955 (2016).
Tabares, C., Zohar, E. & González-Tudela, A. Tunable photon-mediated interactions between spin-1 systems. Phys. Rev. A https://doi.org/10.1103/PhysRevA.106.033705 (2022).
Kim, J., Yu, S. & Park, N. Universal design platform for an extended class of photonic Dirac cones. Phys. Rev. Appl. 13, 044015 (2020).
Bello, M., Platero, G. & González-Tudela, A. Spin many-body phases in standard- and topological-waveguide QED simulators. PRX Quantum 3, 010336 (2022).
Tabares, C., Heras, A. Mdl, Tagliacozzo, L., Porras, D. & González-Tudela, A. Variational quantum simulators based on waveguide QED. Phys. Rev. Lett. 131, 073602 (2023).
Scigliuzzo, M. et al. Controlling atom–photon bound states in an array of Josephson-junction resonators. Phys. Rev. X 12, 031036 (2022).
Zhang, X., Kim, E., Mark, D. K., Choi, S. & Painter, O. A superconducting quantum simulator based on a photonic-bandgap metamaterial. Science 379, 278–283 (2023).
González-Tudela, A., Huidobro, P. A., Martín-Moreno, L., Tejedor, C. & García-Vidal, F. J. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110, 126801 (2013).
Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science https://doi.org/10.1126/science.abd0336 (2021).
Flick, J., Rivera, N. & Narang, P. Strong light–matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7, 1479–1501 (2018).
Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 1123–1129 (2015).
Balasubrahmaniyam, M. et al. From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations. Nat. Mater. 22, 338–344 (2023).
Feist, J., Galego, J. & Garcia-Vidal, F. J. Polaritonic chemistry with organic molecules. ACS Photonics 5, 205–216 (2018).
Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2019).
Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).
Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954).
Gonzalez-Tudela, A., Laussy, F., Tejedor, C., Hartmann, M. & Del Valle, E. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013).
Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 42116 (2015).
Paulisch, V., Kimble, H. J. & González-Tudela, A. Universal quantum computation in waveguide QED using decoherence free subspaces. New J. Phys. 18, 043041 (2016).
Zanner, M. et al. Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nat. Phys. 18, 538–543 (2022).
González-Tudela, A., Paulisch, V., Chang, D. E., Kimble, H. J. & Cirac, J. I. Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett. 115, 163603 (2015).
González-Tudela, A., Paulisch, V., Kimble, H. J. & Cirac, J. I. Efficient multiphoton generation in waveguide quantum electrodynamics. Phys. Rev. Lett. 118, 213601 (2017).
Stannigel, K., Rabl, P. & Zoller, P. Driven-dissipative preparation of entangled states in cascaded quantum-optical networks. New J. Phys. 14, 063014 (2012).
Metelmann, A. & Clerk, A. A. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014).
Ramos, T., Pichler, H., Daley, A. J. & Zoller, P. Quantum spin dimers from chiral dissipation in cold-atom chains. Phys. Rev. Lett. 113, 237203 (2014).
Ramos, T., Vermersch, B., Hauke, P., Pichler, H. & Zoller, P. Non-Markovian dynamics in chiral quantum networks with spins and photons. Phys. Rev. A 93, 62104 (2016).
Liedl, C., Pucher, S., Tebbenjohanns, F., Schneeweiss, P. & Rauschenbeutel, A. Collective radiation of a cascaded quantum system: from timed Dicke states to inverted ensembles. Phys. Rev. Lett. 13, 163602 (2023).
Liedl, C. et al. Observation of superradiant bursts in waveguide QED. Preprint at https://arxiv.org/abs/2211.08940v1 (2022).
Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).
Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).
Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and ‘selective radiance’ in atomic arrays. Phys. Rev. X 7, 031024 (2017).
González-Tudela, A. & Porras, D. Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics. Phys. Rev. Lett. 110, 080502 (2013).
Ask, A. & Johansson, G. Non-Markovian steady states of a driven two-level system. Phys. Rev. Lett. 128, 083603 (2022).
Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 91, 025005 (2019).
Kockum, A. F., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19 (2019).
Sanchez-Burillo, E., Zueco, D., Garcia-Ripoll, J. J. & Martin-Moreno, L. Scattering in the ultrastrong regime: nonlinear optics with one photon. Phys. Rev. Lett. 113, 263604 (2014).
Schiró, M., Bordyuh, M., Ztop, B. & Türeci, H. E. Phase transition of light in cavity QED lattices. Phys. Rev. Lett. 109, 053601 (2012).
Kurcz, A., Bermudez, A. & García-Ripoll, J. J. Hybrid quantum magnetism in circuit QED: from spin-photon waves to many-body spectroscopy. Phys. Rev. Lett. 112, 180405 (2014).
Román-Roche, J., Sánchez-Burillo, E. & Zueco, D. Bound states in ultrastrong waveguide QED. Phys. Rev. A 102, 023702 (2020).
Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).
Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).
Delteil, A. et al. Towards polariton blockade of confined exciton-polaritons. Nat. Mater. 18, 219–222 (2019).
Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).
Blanco-Redondo, A. Topological nanophotonics: toward robust quantum circuits. Proc. IEEE 108, 837–849 (2020).
Tschernig, K. et al. Topological protection versus degree of entanglement of two-photon light in photonic topological insulators. Nat. Commun. 12, 1974 (2021).
Heuck, M., Jacobs, K. & Englund, D. R. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 124, 160501 (2020).
Tomm, N. et al. Photon bound state dynamics from a single artificial atom. Nat. Phys. 19, 857–862 (2023).
Jeannic, H. L. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).
Acknowledgements
A.G.-T., J.J.G.-R. and F.J.G.-V acknowledge support from the Proyecto Sinérgico CAM 2020 Y2020/TCS-6545 (NanoQuCo-CM). A.G.-T. and J.J.G.-R. acknowledge support from the CSIC Interdisciplinary Thematic Platform (PTI) Quantum Technologies (PTI-QTEP+) and from Spanish projects PID2021-127968NB-I00. A.G.-T. also acknowledges the project TED2021-130552B-C22 funded by MCIN/AEI/10.13039/501100011033/FEDER UE and MCIN/AEI/10.13039/501100011033, respectively, and the support from a 2022 Leonardo Grant for Researchers and Cultural Creators, BBVA. A.R. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via the project RE 3967/1 and by the German Federal Ministry of Education and Research (BMBF) via the grant agreements no. 13N15907 and 16KISQ046. F.J.G.-V. acknowledges financial support by the Spanish Ministry for Science and Innovation-Agencia Estatal de Investigacion (AEI) through grants PID2021-125894NB-I00 and CEX2018-000805-M and by the Comunidad de Madrid and the Spanish State through the Recovery, Transformation, and Resilience Plan (“MATERIALES DISRUPTIVOS BIDIMENSIONALES (2D)” (MAD2D-CM)-UAM7), and the European Union through the Next Generation EU funds.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Salvatore Savasta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
González-Tudela, A., Reiserer, A., García-Ripoll, J.J. et al. Light–matter interactions in quantum nanophotonic devices. Nat Rev Phys 6, 166–179 (2024). https://doi.org/10.1038/s42254-023-00681-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-023-00681-1