Abstract
We have investigated variants of interval branch-and-bound algorithms for global optimization where the bisection step was substituted by the subdivision of the current, actual interval into many subintervals in a single iteration step. The convergence properties of the multisplitting methods, an important class of multisection procedures are investigated in detail. We also studied theoretically the convergence improvements caused by multisection on algorithms which involve the accelerating tests (like e.g. the monotonicity test). The results are published in two papers, the second one contains the numerical test result.
Similar content being viewed by others
References
Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations. Academic Press, New York.
Berner, S. (1995), Ein paralleles Verfahren zur verifizierten globalen Optimierung. Dissertation, Universität Wuppertal.
Berner, S. (1966), New results on verified global optimization, Computing 57: 323–343.
Casado, L.G., García, I. and Csendes, T., Adaptive Multisection in Interval Methods for Global Optimization, submitted for publication (available at http: / /www.inf.u-szeged.hu/~csendes/publ.html).
Casado, L.G., García, I. and Csendes, T., A Heuristic Rejection Criterion in Interval Global Optimization Algorithms, submitted for publication (available at http: / /www.inf.u-szeged.hu/~csendes/publ.html).
Csallner, A.E. (1993), Global optimization in separation network synthesis, Hungarian J. Industrial Chemistry 21: 303–308.
Csallner, A.E. and Csendes, T. (1996), On the convergence speed of interval methods for global optimization, Computers, Mathematics and Applications 31: 173–178.
Csendes, T. and Pintér, J. (1993), The impact of accelerating tools on the interval subdivision algorithm for global otimization, European J. of Operational Research 65: 314–320.
Csendes, T. and Ratz, D. (1997), Subdivision direction selection in interval methods for global optimization, SIAM J. Numerical Analysis 34: 922–938.
Hansen, E. (1992), Global optimization using interval analysis. Marcel Dekker, New York.
Hansen, P., Jaumard, B. and Xiong, J. (1994), Cord-Slope Form of Taylor's Expansion in Univariate Global Optimization, J. Optimization Theory and Applications 80: 441–464.
Ichida, K. and Fujii, Y. (1979), An interval arithmetic method for global otimization. Computing 23: 85–97.
Kearfott, R.B. (1996), Test results for an interval branch and bound algorithm for equalityconstrained optimization. In: Floudas, C.A. and Pardalos, P.M. (eds.), State of the Art in Global Optimization. Kluwer, Dordrecht, 181–199.
Kearfott, R.B. (1996), Rigorous global search: continuous problems. Kluwer, Dordrecht.
Krawczyk, R. and Neumaier, A. (1985), Interval Slopes for Rational Functions and Associated Centered Forms, SIAM J. Numerical Analysis 22: 604–616.
Markót, M.Cs., Csendes, T. and Csallner, A.E., Multisection in Interval Branch-and-Bound Methods for Global Optimization II. Numerical Tests. Submitted for publication (available at http://www.inf.u-szeged.hu/~csendes/publ.html).
Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization. Ellis Horwood, Chichester.
Ratschek, H. and Rokne, J. (1993), Interval Methods, In: Horst R. and Pardalos P.M. (eds.), Handbook of Global Optimiation, Kluwer, Dordrecht, 751–828.
Ratz, D. (1992), Automatische Ergebnisverifikation bei globalen Optimierungsproblemen. Dissertation, Univesität Karlsruhe.
Ratz, D. and Csendes, T. (1995), On the selection of subdivision directions in interval branch-and-bound methods for global optimization, J. Global Optimization 7, 183–207.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Csallner, A.E., Csendes, T. & Csaba markót, M. Multisection in Interval Branch-and-Bound Methods for Global Optimization – I. Theoretical Results. Journal of Global Optimization 16, 371–392 (2000). https://doi.org/10.1023/A:1008354711345
Issue Date:
DOI: https://doi.org/10.1023/A:1008354711345