Abstract
Interval Branch and Bound algorithms are used to solve rigorously continuous constraint satisfaction and constrained global optimization problems. In this paper, we explain the basic principles behind interval Branch and Bound algorithms. We detail the main components and describe issues that should be considered to improve the efficiency of the algorithms.
Similar content being viewed by others
Notes
References
Araya, I., Neveu, B., Trombettoni, G.: Exploiting common subexpressions in numerical CSPs. In: Principles and Practice of Constraint Programming (CP 2008), pp. 342–357. Springer (2008)
Araya, I., Neveu, B., Trombettoni, G.: An interval extension based on occurrence grouping. Computing 94(2–4), 173–188 (2012)
Araya, I., Reyes, V., Oreallana, C.: More smear-based variable selection heuristics for NCSPs. In: International Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 1004–1011. IEEE (2013)
Araya, I., Trombettoni, G., Neveu, B.: A contractor based on convex interval Taylor. In: Proceedings of CPAIOR, LNCS 7298, pp. 1–16 (2012)
Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper bounding in inner regions for global optimization under inequality constraints. J. Glob. Optim. 60, 145–164 (2014). doi:10.1007/s10898-014-0145-7
Araya, I., Trombettoni, G., Neveu, B., et al.: Exploiting monotonicity in interval constraint propagation. In: AAAI (2010)
Baharev, A., Achterberg, T., Rév, E.: Computation of an extractive distillation column with affine arithmetic. AIChE J. 55(7), 1695–1704 (2009)
Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Recent Advances in Constraints, pp. 41–55. Springer (2005)
Belotti, P.: Couenne, a users manual (2013). http://www.coin-or.org/Couenne/
Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)
Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: International Conference on Logic Programming. Citeseer (1999)
Bessiere, C., Régin, J.C.: MAC and combined heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In: Principles and Practice of Constraint Programming (CP96), pp. 61–75. Springer (1996)
Bliek, C.: Computer methods for design automation. Ph.D. thesis, Massachusetts Institute of Technology (1992)
Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and computation. In: Hybrid Systems: Computation and Control, pp. 46–60. Springer (1999)
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI, vol. 16, p. 146 (2004)
Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)
Carrizosa, E., Hansen, P., Messine, F.: Improving interval analysis bounds by translations. J. Glob. Optim. 29(2), 157–172 (2004)
Casado, L., Martinez, J., García, I.: Experiments with a new selection criterion in a fast interval optimization algorithm. J. Glob. Optim. 19(3), 247–264 (2001)
Cauchy, A.: Méthode générale pour la résolution des systemes déquations simultanées. C. R. Sci. Paris 25(1847), 536–538 (1847)
Ceberio, M., Granvilliers, L.: Horner’s rule for interval evaluation revisited. Computing 69(1), 51–81 (2002)
Ceberio, M., Granvilliers, L.: Solving nonlinear equations by abstraction, Gaussian elimination, and interval methods. In: Frontiers of Combining Systems, pp. 117–131. Springer (2002)
Ceberio, M., Kreinovich, V.: Greedy algorithms for optimizing multivariate Horner schemes. ACM SIGSAM Bull. 38(1), 8–15 (2004)
Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173(11), 1079–1100 (2009)
Chenouard, R., Goldsztejn, A., Jermann, C., et al.: Search strategies for an anytime usage of the branch and prune algorithm. In: IJCAI, pp. 468–473 (2009)
Comba, J., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: Proceedings of SIBGRAPI’93—VI Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, pp. 9–18 (1993)
Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34(3), 922–938 (1997)
De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)
Demidovitch, B., Maron, I., Polonski, V.: Eléments de calcul numérique. Mir (1973)
Drud, A.S.: CONOPT: a large-scale GRG code. ORSA J. Comput. 6(2), 207–216 (1994)
Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3), 253–265 (1994)
Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)
Eldon, H., William, W.: Global optimization using interval analysis (1992)
Faltings, B.V., Lottaz, C., et al.: Collaborative design using solution spaces (2000)
Felner, A., Kraus, S., Korf, R.E.: KBFS: K-best-first search. Ann. Math. Artif. Intell. 39(1–2), 19–39 (2003)
Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization, vol. 1. Springer Science & Business Media, Berlin (2008)
Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3(1–2), 95–110 (1956)
Frommer, A., Lang, B.: Existence tests for solutions of nonlinear equations using Borsuk’s theorem. SIAM J. Numer. Anal. 43(3), 1348–1361 (2005)
Fünfzig, C., Michelucci, D., Foufou, S.: Nonlinear systems solver in floating-point arithmetic using LP reduction. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 123–134. ACM (2009)
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)
Goldsztejn, A., Granvilliers, L.: A new framework for sharp and efficient resolution of NCSP with manifolds of solutions. Constraints 15(2), 190–212 (2010)
Goldsztejn, A., Lebbah, Y., Michel, C., Rueher, M.: Revisiting the upper bounding process in a safe branch and bound algorithm. In: Principles and Practice of Constraint Programming (CP 2008), pp. 598–602. Springer (2008)
Golomb, S.W., Baumert, L.D.: Backtrack programming. J. ACM (JACM) 12(4), 516–524 (1965)
Granvilliers, L.: Adaptive bisection of numerical CSPs. In: Principles and Practice of Constraint Programming (2012), pp. 290–298. Springer (2012)
Granvilliers, L., Goldsztejn, A.: A branch-and-bound algorithm for unconstrained global optimization. In: Proceedings of the 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN) (2010)
Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical toolbox for verified computing I (1993)
Hansen, E.: Interval arithmetic in matrix computations, Part I. J Soc Ind. Appl. Math. Ser. B Numer. Anal. 2(2), 308–320 (1965)
Hansen, E.: Global optimization using interval analysis: the multi-dimensional case. Numer. Math. 34(3), 247–270 (1980)
Hansen, E.: Bounding the solution of interval linear equations. SIAM J. Numer. Anal. 29(5), 1493–1503 (1992)
Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)
Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis: Revised and Expanded, vol. 264. CRC Press, Boca Raton (2003)
Ishii, D., Goldsztejn, A., Jermann, C.: Interval-based projection method for under-constrained numerical systems. Constraints 17(4), 432–460 (2012)
Jaggi, M.: Revisiting Frank–Wolfe: projection-free sparse convex optimization. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 427–435 (2013)
Jaulin, L.: Localization of an underwater robot using interval constraint propagation. In: Principles and Practice of Constraint Programming (CP 2006), pp. 244–255. Springer (2006)
John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday (Jan. 8, 1948), pp. 187–204. Interscience, New York (1948)
Karush, W.: Minima of functions of several variables with inequalities as side constraints. Ph.D. thesis, Masters thesis, Dept. of Mathematics, University of Chicago (1939)
Kearfott, R.B.: Preconditioners for the interval Gauss–Seidel method. SIAM J. Numer. Anal. 27(3), 804–822 (1990)
Kearfott, R.B.: An interval branch and bound algorithm for bound constrained optimization problems. J. Glob. Optim. 2(3), 259–280 (1992)
Kearfott, R.B.: Discussion and empirical comparisons of linear relaxations and alternate techniques in validated deterministic global optimization. Optim. Methods Softw. 21(5), 715–731 (2006)
Kearfott, R.B.: GlobSol user guide. Optim. Methods Softw. 24(4–5), 687–708 (2009)
Kearfott, R.B.: On rigorous upper bounds to a global optimum. J. Glob. Optim. 59(2–3), 459–476 (2014)
Kearfott, R.B., Hongthong, S.: Validated linear relaxations and preprocessing: some experiments. SIAM J. Optim. 16(2), 418–433 (2005)
Kearfott, R.B., Novoa III, M.: Algorithm 681: INTBIS, a portable interval Newton/bisection package. ACM Trans. Math. Softw. (TOMS) 16(2), 152–157 (1990)
Kearfott, R.B., Walster, G.W.: Symbolic preconditioning with Taylor models: some examples. Reliab. Comput. 8(6), 453–468 (2002)
Kieffer, M.: Distributed bounded-error parameter and state estimation in networks of sensors. In: Numerical Validation in Current Hardware Architectures, pp. 189–202. Springer (2009)
Kieffer, M., Walter, E.: Centralized and distributed source localization by a network of sensors using guaranteed set estimation. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, vol. 4, pp. IV–IV. IEEE (2006)
Kolev, L.V.: Use of interval slopes for the irrational part of factorable functions. Reliab. Comput. 3(1), 83–93 (1997)
Krawczyk, R.: Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Computing 4(3), 187–201 (1969)
Kueviakoe, I., Lambert, A., Tarroux, P.: Comparison of interval constraint propagation algorithms for vehicle localization. J. Softw. Eng. Appl. 5, 157 (2013)
Lagouanelle, J.L., Soubry, G.: Optimal multisections in interval branch-and-bound methods of global optimization. J. Glob. Optim. 30(1), 23–38 (2004)
Lebbah, Y.: Icos: a branch and bound based solver for rigorous global optimization. Optim. Methods Softw. 24(4–5), 709–726 (2009)
Lebbah, Y., Michel, C., Rueher, M.: An efficient and safe framework for solving optimization problems. J. Comput. Appl. Math. 199(2), 372–377 (2007)
Lhomme, O.: Consistency techniques for numeric CSPs. In: IJCAI, vol. 93, pp. 232–238. Citeseer (1993)
Liberti, L.: Writing global optimization software. In: Global Optimization, pp. 211–262. Springer (2006)
Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)
Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)
Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7(2), 143–182 (1995)
Markót, M.C., Fernandez, J., Casado, L.G., Csendes, T.: New interval methods for constrained global optimization. Math. Program. 106(2), 287–318 (2006)
Markót, M.C., Schichl, H.: Bound constrained interval global optimization in the COCONUT environment. J. Glob. Optim. 60(4), 751–776 (2014)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)
Merlet, J.P.: Optimal design for the micro parallel robot MIPS. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings of ICRA’02, vol. 2, pp. 1149–1154. IEEE (2002)
Merlet, J.P.: Interval analysis for certified numerical solution of problems in robotics. Int. J. Appl. Math. Comput. Sci. 19(3), 399–412 (2009)
Messine, F.: Extentions of affine arithmetic: application to unconstrained global optimization. J. Univers. Comput. Sci. 8(11), 992–1015 (2002)
Messine, F.: Deterministic global optimization using interval constraint propagation techniques. RAIRO Oper. Res. 38(04), 277–293 (2004)
Messine, F.: A deterministic global optimization algorithm for design problems. In: Essays and Surveys in Global Optimization, pp. 267–294. Springer (2005)
Messine, F., Nogarede, B., Lagouanelle, J.L.: Optimal design of electromechanical actuators: a new method based on global optimization. IEEE Trans. Magn. 34(1), 299–308 (1998)
Messine, F., Touhami, A.: A general reliable quadratic form: an extension of affine arithmetic. Reliab. Comput. 12(3), 171–192 (2006)
Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)
Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems, pp. 228–243. Springer (2012)
Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2013)
Moore, R.: Interval Analysis, vol. 60 (1966)
Mourad, F., Snoussi, H., Abdallah, F., Richard, C.: Anchor-based localization via interval analysis for mobile ad-hoc sensor networks. IEEE Trans. Signal Process. 57(8), 3226–3239 (2009)
Nataraj, P., Patil, M.D.: Reliable and robust automated synthesis of QFT controller for nonlinear magnetic levitation system using interval constraint satisfaction techniques. In: Constraint Programming and Decision Making, pp. 131–135. Springer (2014)
Nataraj, P., Tharewal, S.: An interval analysis algorithm for automated controller synthesis in QFT designs. J. Dyn. Syst. Meas. Contr. 129(3), 311–321 (2007)
Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear programming. Math. Program. 99(2), 283–296 (2004)
Neveu, B., Trombettoni, G., et al.: Adaptive constructive interval disjunction. In: International Conference on Tools with Artificial Intelligence (ICTAI), pp. 900–906 (2013)
Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR (2014). doi:10.1007/s10288-014-0269-0
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, vol. 30. Siam, Philadelphia (2000)
Patil, M.D., Nataraj, P.: QFT prefilter design for multivariable systems using interval constraint satisfaction technique. J. Control Theory Appl. 11(4), 529–537 (2013)
Ramdani, N., Meslem, N., Candau, Y.: Reachability of uncertain nonlinear systems using a nonlinear hybridization. In: Hybrid Systems: Computation and Control, pp. 415–428. Springer, Berlin (2008)
Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques. Nonlinear Anal. Hybrid Syst. 5(2), 149–162 (2011)
Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Horwood, Chichester (1988)
Ratz, D.: Automatische ergebnisveri kation bei globalen optimierungsproblemen. Ph.D. thesis, Dissertation, Universit at Karlsruhe (1992)
Refalo, P.: Impact-based search strategies for constraint programming. In: Principles and Practice of Constraint Programming (CP 2004), pp. 557–571. Springer (2004)
Reynet, O., Voisin, O., Jaulin, L.: Anchor-based localization using distributed interval contractors (2011)
Roy, J.M.: Singularities in Deterministic Global Optimization. University of Louisiana at Lafayette (2010)
Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996)
Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)
Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. Constraints 1(1–2), 85–118 (1996)
Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM J. Numer. Anal. 42(1), 383–408 (2004)
Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob. Optim. 33(4), 541–562 (2005)
Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12(1), 1–36 (1998)
Smith, B.M., Grant, S.A.: Trying harder to fail first. Research report series/University of Leeds, School of Computer Studies LU SCS RR (1997)
Soares, R.D.P.: Finding all real solutions of nonlinear systems of equations with discontinuities by a modified affine arithmetic. Comput. Chem. Eng. 48, 48–57 (2013)
Stamatatos, E., Stergiou, K.: Learning how to propagate using random probing. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 263–278. Springer (2009)
Stergiou, K.: Heuristics for dynamically adapting propagation in constraint satisfaction problems. AI Commun. 22(3), 125–141 (2009)
Tapia, R.: The Kantorovich theorem for Newton’s method. Am. Math. Mon. 78(4), 389–392 (1971)
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, Berlin (2002)
Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearizations for global optimization. In: AAAI, pp. 99–104 (2011)
Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Principles and Practice of Constraint Programming (CP 2007), pp. 635–650. Springer (2007)
Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. MIT Press, Cambridge (2003)
Vu, X.H., Sam-Haroud, D., Faltings, B.: Combining multiple inclusion representations in numerical constraint propagation. In: International Conference on Tools with Artificial Intelligence (ICTAI 2004), pp. 458–467. IEEE (2004)
Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Approximation techniques for non-linear problems with continuum of solutions. In: Abstraction, Reformulation, and Approximation, pp. 224–241. Springer (2002)
Vu, X.H., Schichl, H., Sam-Haroud, D.: Using directed acyclic graphs to coordinate propagation and search for numerical constraint satisfaction problems. In: International Conference on Tools with Artificial Intelligence (ICTAI 2004), pp. 72–81. IEEE (2004)
Yamamura, K., Kawata, H., Tokue, A.: Interval solution of nonlinear equations using linear programming. BIT Numer. Math. 38(1), 186–199 (1998)
Yannou, B., Simpson, T.W., Barton, R.R.: Towards a conceptual design explorer using metamodeling approaches and constraint programming. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 605–614. American Society of Mechanical Engineers (2003)
Acknowledgments
This work is supported by the Fondecyt Project 1120781.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Araya, I., Reyes, V. Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects. J Glob Optim 65, 837–866 (2016). https://doi.org/10.1007/s10898-015-0390-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-015-0390-4