Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-16T15:17:16.209Z Has data issue: false hasContentIssue false

Symmetry and invariants of kinematic chains and parallel manipulators

Published online by Cambridge University Press:  21 March 2012

Roberto Simoni*
Affiliation:
Centro de Engenharia da Mobilidade – Campus Joinville, Universidade Federal de Santa Catarina – 88040-900 – Florianópolis, Santa Catarina, Brasil
Celso Melchiades Doria
Affiliation:
Departamento de Matemática – Campus Trindade, Universidade Federal de Santa Catarina – 88040-900 – Florianópolis, Santa Catarina, Brasil
Daniel Martins
Affiliation:
Departamento de Engenharia Mecânica – Campus Trindade, Universidade Federal de Santa Catarina – 88040-900 – Florianópolis, Santa Catarina, Brasil
*
*Corresponding author. E-mail: roberto.emc@gmail.com

Summary

This paper presents applications of group theory tools to simplify the analysis of kinematic chains associated with mechanisms and parallel manipulators. For the purpose of this analysis, a kinematic chain is described by its properties, i.e. degrees-of-control, connectivity and redundancy matrices. In number synthesis, kinematic chains are represented by graphs, and thus the symmetry of a kinematic chain is the same as the symmetry of its graph. We present a formal definition of symmetry in kinematic chains based on the automorphism group of its associated graph. The symmetry group of the graph is associated with the graph symmetry. By using the group structure induced by the symmetry of the kinematic chain, we prove that degrees-of-control, connectivity and redundancy are invariants by the action of the automorphism group of the graph. Consequently, it is shown that it is possible to reduce the size of these matrices and thus reduce the complexity of the kinematic analysis of mechanisms and parallel manipulators in early stages of mechanisms design.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Agrawal, V. P. and Rao, J. S., “The mobility properties of kinematic chains,” Mech. Mach. Theory. 22 (5), 497504 (1987).CrossRefGoogle Scholar
2.Alperin, J. L. and Bell, R. B., Groups and Representations (Springer-Verlag, Berlin, Germany, 1995).CrossRefGoogle Scholar
3.Belfiore, N. P. and Di Benedetto, A., “Connectivity and redundancy in spatial robots,” Int. J. Robot. Res. 19 (12), 12451261 (2000).CrossRefGoogle Scholar
4.Biggs, N., Algebraic Graph Theory (Cambridge University Press, Cambridge, UK, 1993).Google Scholar
5.Burrow, M., Representation Theory of Finite Groups (Academic Press, New York, 1965).CrossRefGoogle Scholar
6.Carboni, A. P., Análise Estrutural de Cadeias Cinemáticas Planas e Espaciais Master's Thesis (Universidade Federal de Santa Catarina, Brazil. 2008).Google Scholar
7.Chang, Z., Zhang, C., Yang, Y. and Wang, Y., “A new method to mechanism kinematic chain isomorphism identification,” Mech. Mach. Theory. 37 (4), 411417 (2002).CrossRefGoogle Scholar
8.Chen, I-M. and Burdick, J. W., “Enumerating the non-isomorphic assembly configurations of modular robotic systems,” Int. J. Robot. Res. 17 (7), 702719 (1998).CrossRefGoogle Scholar
9.Chen, I. M. and Burdick, J. W., “Determining Task Optimal Modular Robot Assembly Configurations,” In: Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Aichi, Japan (May 21–27, 1995), vol. 1, pp. 132137.Google Scholar
10.Erdős, P. and Rényi, A., “Asymmetric graphs,” Acta Math. Hung. 14 (3), 295315 (1963).CrossRefGoogle Scholar
11.Fang, Y. and Tsai, L. W., “Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures,” Int. J. Robot. Res. 21 (9), 799810 (2002).CrossRefGoogle Scholar
12.Godsil, C. D. and Royle, G., Algebraic Graph Theory (Springer, Hamburg, Germany, 2001).CrossRefGoogle Scholar
13.Gogu, G., Structural Synthesis of Parallel Robots: Part 1: Methodology (Springer-Verlag, Berlin, Germany, 2008).CrossRefGoogle Scholar
14.Gogu, G., Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three Degrees of Freedom (Springer-Verlag, Berlin, Germany, 2009).Google Scholar
15.Gogu, G., “Mobility of mechanisms: A critical review,” Mech. Mach. Theory. 40 (9), 10681097 (2005).CrossRefGoogle Scholar
16.Gross, J. L. and Tucker, T. W., Topological Graph Theory (Dover Publications, Dover, UK, 2001).Google Scholar
17.Hell, P. and Nešetřil, J., Graphs and Homomorphisms (Oxford University Press, Oxford, UK, 2004).CrossRefGoogle Scholar
18.Homem de Mello, L. S. and Sanderson, A. C., “A correct and complete algorithm for the generation of mechanical assembly sequences,” IEEE Trans. Robot. Autom. 7 (2), 228240 (1991).CrossRefGoogle Scholar
19.Huang, Z. and Li, Q. C., “Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method,” Int. J. Robot. Res. 22 (1), 5979 (2003).Google Scholar
20.Hunt, K. H., Kinematic Geometry of Mechanisms (Clarendon, Oxford, UK, 1978).Google Scholar
21.King, G. H. and Tzeng, W. G., “A new graph invariant for graph isomorphism: Probability propagation matrix,” J. Inf. Sci. Eng. 15 (3), 337352 (1999).Google Scholar
22.Kong, X. and Gosselin, C., Type Synthesis of Parallel Mechanisms (Springer-Verlag, Berlin, Germany, 2007).Google Scholar
23.Kong, X. and Gosselin, C. M., “Type synthesis of 3T1R 4-DOF parallel manipulators based on screw theory,” IEEE Trans. Robot. Autom. 20 (2), 181190 (2004).CrossRefGoogle Scholar
24.Kong, X. and Gosselin, C. M., “Type synthesis of 5-DOF parallel manipulators based on screw theory,” J. Robot. Syst. 22 (10), 535547 (2005).CrossRefGoogle Scholar
25.Lauri, J. and Scapellato, R., Topics in Graph Automorphisms and Reconstruction (Cambridge University Press, Cambridge, UK, 2003).Google Scholar
26.Li, Q., Huang, Z. and Hervé, J. M., “Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements,” IEEE Trans. Robot. Autom. 20 (2), 173180 (2004).CrossRefGoogle Scholar
27.Liberati, A. and Belfiore, N. P., “A method for the identification of the connectivity in multi-loop kinematic chains: Analysis of chains with total and partial mobility,” Mech. Mach. Theory. 41 (12), 14431466 (2006).CrossRefGoogle Scholar
28.Liu, T. and Yu, C. H., “Identification and classification of multi-degree-of-freedom and multi-loop mechanisms,” J. Mech. Des. 117, 104111 (1995).CrossRefGoogle Scholar
29.Liu, Y. and Popplestone, R. J., “Symmetry Groups in Analysis of Assembly Kinematics,” In: Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (Apr. 9–11, 1991) pp. 572577.Google Scholar
30.Martins, D. and Carboni, A. P., “Variety and connectivity in kinematic chains,” Mech. Mach. Theory. 43 (10), 12361252 (2008).CrossRefGoogle Scholar
31.McKay, B., The Nauty website, http://cs.anu.edu.au/bdm/nauty/ (accessed April 20, 2009).Google Scholar
32.McKay, B., “Nauty Users Guide (Version 1.5)Technical Report TR-CS-90-02 (Department of Computer Science, Australian National University, Australian Capital Territory, Australia, 1990.Google Scholar
33.McKay, B. D., Nauty User's Guide (Version 2.2), http://cs.anu.edu.au/bdm/nauty/nug.pdf (accessed April 29, 2009).Google Scholar
34.McKay, B. D., “Isomorph-free exhaustive generation,” J. Algorithm 26 (2), 306324 (1998).CrossRefGoogle Scholar
35.Mruthyunjaya, T. S., “Kinematic structure of mechanisms revisited,” Mech. Mach. Theory. 38 (4), 279320 (2003).CrossRefGoogle Scholar
36.Park, W., Liu, Y., Zhou, Y., Moses, M. and Chirikjian, G. S., “Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map,” Robotica 26 (4), 419434 (2008).CrossRefGoogle ScholarPubMed
37.Petitjean, M., “A definition of symmetry,” Symmetry: Cult. Sci. 18, 99119 (2007).Google Scholar
38.Phillips, J., Freedom in Machinery: Introducing Screw Theory (Cambridge University Press, New York, 1984).Google Scholar
39.Rao, A. C., “Application of fuzzy logic for the study of isomorphism, inversions, symmetry, parallelism and mobility in kinematic chains,” Mech. Mach. Theory 35 (8), 11031116 (2000).CrossRefGoogle Scholar
40.Rotman, J. J., An Introduction to the Theory of Groups (Springer, New York, 1995).CrossRefGoogle Scholar
41.SAGE. Sage: Open source mathematics software, http://www.sagemath.org/ (accessed April 20, 2009).Google Scholar
42.Selig, J. M., Geometric Fundamentals of Robotics (Springer-Verlag, New York, 2005).Google Scholar
43.Shoham, M. and Roth, B., “Connectivity in open and closed loop robotic mechanisms,” Mech. Mach. Theory 32 (3), 279294 (1997).CrossRefGoogle Scholar
44.Simoni, R., Carboni, A. P. and Martins, D., “Enumeration of parallel manipulators,” Robotica 27 (04), 589597 (2008).CrossRefGoogle Scholar
45.Simoni, R., Carboni, A. P. and Martins, D., “Enumeration of kinematic chains and mechanisms,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 223 (4), 10171024 (2009).CrossRefGoogle Scholar
46.Sorlin, S. and Solnon, C., “A parametric filtering algorithm for the graph isomorphism problem,” Constraints 13 (4), 518537 (2008).CrossRefGoogle Scholar
47.Tischler, C., Samuel, A. and Hunt, K., “Selecting multi-freedom multi-loop kinematic chains to suit a given task,” Mech. Mach. Theory 36 (8), 925938 (2001).CrossRefGoogle Scholar
48.Tischler, C. R., Samuel, A. E. and Hunt, K. H., “Kinematic chains for robot hands. II: Kinematic constraints, classification, connectivity, and actuation,” Mech. Mach. Theory 30 (8), 12171239 (1995).CrossRefGoogle Scholar
49.Tischler, C. R., Samuel, A. E. and Hunt, K. H., “Dextrous robot fingers with desirable kinematic forms,” Int. J. Robot. Res. 17 (9), 9961012 (1998).CrossRefGoogle Scholar
50.Tsai, L. W., Mechanism Design: Enumeration of Kinematic Structures According to Function (CRC Press, Boca Raton, FL, USA, 2001).Google Scholar
51.Tuttle, E. R., “Generation of planar kinematic chains,” Mech. Mach. Theory 31 (6), 729748 (1996).CrossRefGoogle Scholar
52.Wang, Y. and Chirikjian, G. S., “Workspace generation of hyper-redundant manipulators as a diffusion process on se(n),” IEEE Trans. Robot. Autom. 20 (3), 399408 (2004).CrossRefGoogle Scholar
53.Weisstein, E. W., Group generators, from MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/GroupGenerators.html (accessed April 20, 2009).Google Scholar