[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Cartan Connections as a Tool for Kinematic Chain Calculation

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, the application of the concepts of Cartan connection and covariant derivative to robotics and mechanisms is presented. In particular, how Cartan connection can be used in kinematic calculation for rigid serial manipulators. The ideas were inspired in books of differential geometry, Lie groups and Lie algebras and its applications. The important concept of extended Newton’s law (or covariant formulations of dynamics) is also presented. It is presented first for the case of pure rotations and then for general motion of the robot’s links. Some calculations are presented for the case of a two-link planar robot, which is an example of serial mechanism, and for a planar n-bar mechanism, which is a closed-loop system. Finally, conclusions and future work directions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham, R., & Marsden, J. E. (1985). Foundations of mechanics (2nd ed.). Boston: Addison-wesley.

    Google Scholar 

  • Ball, R. S. (1876). The theory of screws: A study in the dynamics of a rigid body. Mathematische Annalen, 9(4), 541–553.

    Article  MathSciNet  Google Scholar 

  • Bernardes, M. C., Adorno, B. V., Borges, G. A., & Poignet, P. (2014). 3d robust online motion planning for steerable needles in dynamic workspaces using duty-cycled rotation. Journal of Control, Automation and Electrical Systems, 25(2), 216–227.

    Article  Google Scholar 

  • Bottema, O. (1979). Theoretical kinematics. Amsterdam: North-Holland Pub Co.,

    MATH  Google Scholar 

  • Campos, A., Guenther, R., & Martins, D. (2005). Differential kinematics of serial manipulators using virtual chains. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27, 345–356.

    Article  Google Scholar 

  • Choquet-Bruhat, Y., DeWitt-Morette, C., & Dillard-Bleick, M. (1982). Analysis, manifolds and physics: Part I: Basics, revised edn. Amsterdam: Elsevier Science Publishers B. V. (North-Holland).

  • Colón, D. (2014). Connections between screw theory and cartan’s connections. In: Proceedings of the congresso brasileiro de automática 2014, Sociedade Brasileira de Automatica, Belo Horizonte.

  • Colón, D. (2015). Cartan’s connection, fiber bundles and quaternions in kinematics and dynamics calculations. In: Proceedings of the ASME 2015 IDETC/CIE 2015. Boston: ASME.

  • Colón, D., & Pait, F. M. (2004). Geometry of adaptive control: Optimization and geodesics. International Journal of Adaptive Control and Signal Processing, 18, 381–392.

    Article  MATH  Google Scholar 

  • Craig, J. J. (1989). Introduction to robotics: Mechanics and control. Boston: Addison-Wesley Longman.

    MATH  Google Scholar 

  • Davidson, J., & Hunt, K. (2004). Robots and screw theory: Applications of kinematics and statics to robotics. Oxford: Oxford University Press.

    Google Scholar 

  • De Oliveira, A.S., De Pieri, E.R., Moreno, U.F., Martins, D. (2014). A new approach to singularity-free inverse kinematics using dual-quaternionic error chains in the Davies method. Robotica.

  • Featherstone, R. (2014). Rigid body dynamics algorithms. New York: Springer.

    Google Scholar 

  • Ivey, T. A., & Landsberg, J. M. (2003). Cartan for beginners: Differential geometry via moving frames and exterior differential systems, graduate studies in mathematics (Vol. 61). Providence: American mathematical society.

    Google Scholar 

  • Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2009). Introduction à la commande des robots humanoïdes: De la modélisation à la génération du mouvement (translated by Sophie Sakka) (1st ed.). New York: Springer-verlag Paris.

  • McCarthy, J. (1990). An introduction to theoretical kinematics. Cambridge: MIT Press.

    Google Scholar 

  • Murray, R. M., Li, Z., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, Corporate Blvd.

  • Pait, F.M., Colón, D. (2010). Some properties of the riemannian distance function and the position vector x, with applications to the construction of lyapunov functions. In: Proceedings of the 49th IEEE conference on decision and control (pp. 6277–6280).

  • Radavelli, L. A., De Pieri, E. R., Martins, D., & Simoni, R. (2014). Points, lines, screws and planes in dual quaternions kinematics. In O. Khatib & J. Lenarčič (Eds.), Advances in robot kinematics (pp. 285–293). New York: Springer International Publishing.

    Chapter  Google Scholar 

  • Radavellli, L.A., De Pieri, E.R., Martins, D., Simoni, R. (2014). A screw dual quaternion operator for serial robot kinematics. In: Proceedings of PACAM XIV, Santiago.

  • Sattinger, D. H., & Weaver, O. L. (1986). Applied mathematical sciences. Lie groups and algebras with applications to physics, geometry and mechanics (Vol. 61). New York: Springer.

    Chapter  Google Scholar 

  • Schwarz, A. S. (1996). Topology for physicists. Grundlehren der mathematischen Wissenschaften: A series of comprehensive studies im mathematics. New York: Springer.

    Google Scholar 

  • Selig, J. M. (2005). Geometric fundamentals of robotics (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Sharpe, R. W. (1997). Differential geometry: Cartan generalization of Klein erlangen program. Graduate texts in mathematics (Vol. 166). New York: Springer.

    Google Scholar 

  • Simoni, R., Doria, C.M., Martins, D. (2013). Symmetry and invariants of kinematic chains and parallel manipulators. Robotica 31.

  • Spivak, M. (2005). Comprehensive introduction to differential geometry, (Vol. 2, 3rd edn). Houston, TX: Publish or Perish, INC.

  • Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. Hoboken: Wiley.

    Google Scholar 

  • Spong, M., & Vidyasagar, M. (1989). Robot dynamics and control. Hoboken: Wiley.

    Google Scholar 

  • Tsai, L. (1999). Robot analysis: The mechanics of serial and parallel manipulators. New York: Wiley.

    Google Scholar 

  • Yang, F. F. A. T. (1964). Application of dual-number quaternions algebra to the analysis of spatial mechanisms. Journal of Applied Mechanics, 31(2), 300–308.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Colón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colón, D. Cartan Connections as a Tool for Kinematic Chain Calculation. J Control Autom Electr Syst 26, 630–641 (2015). https://doi.org/10.1007/s40313-015-0211-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0211-5

Keywords

Navigation