Abstract
In this paper, the application of the concepts of Cartan connection and covariant derivative to robotics and mechanisms is presented. In particular, how Cartan connection can be used in kinematic calculation for rigid serial manipulators. The ideas were inspired in books of differential geometry, Lie groups and Lie algebras and its applications. The important concept of extended Newton’s law (or covariant formulations of dynamics) is also presented. It is presented first for the case of pure rotations and then for general motion of the robot’s links. Some calculations are presented for the case of a two-link planar robot, which is an example of serial mechanism, and for a planar n-bar mechanism, which is a closed-loop system. Finally, conclusions and future work directions are presented.
Similar content being viewed by others
References
Abraham, R., & Marsden, J. E. (1985). Foundations of mechanics (2nd ed.). Boston: Addison-wesley.
Ball, R. S. (1876). The theory of screws: A study in the dynamics of a rigid body. Mathematische Annalen, 9(4), 541–553.
Bernardes, M. C., Adorno, B. V., Borges, G. A., & Poignet, P. (2014). 3d robust online motion planning for steerable needles in dynamic workspaces using duty-cycled rotation. Journal of Control, Automation and Electrical Systems, 25(2), 216–227.
Bottema, O. (1979). Theoretical kinematics. Amsterdam: North-Holland Pub Co.,
Campos, A., Guenther, R., & Martins, D. (2005). Differential kinematics of serial manipulators using virtual chains. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27, 345–356.
Choquet-Bruhat, Y., DeWitt-Morette, C., & Dillard-Bleick, M. (1982). Analysis, manifolds and physics: Part I: Basics, revised edn. Amsterdam: Elsevier Science Publishers B. V. (North-Holland).
Colón, D. (2014). Connections between screw theory and cartan’s connections. In: Proceedings of the congresso brasileiro de automática 2014, Sociedade Brasileira de Automatica, Belo Horizonte.
Colón, D. (2015). Cartan’s connection, fiber bundles and quaternions in kinematics and dynamics calculations. In: Proceedings of the ASME 2015 IDETC/CIE 2015. Boston: ASME.
Colón, D., & Pait, F. M. (2004). Geometry of adaptive control: Optimization and geodesics. International Journal of Adaptive Control and Signal Processing, 18, 381–392.
Craig, J. J. (1989). Introduction to robotics: Mechanics and control. Boston: Addison-Wesley Longman.
Davidson, J., & Hunt, K. (2004). Robots and screw theory: Applications of kinematics and statics to robotics. Oxford: Oxford University Press.
De Oliveira, A.S., De Pieri, E.R., Moreno, U.F., Martins, D. (2014). A new approach to singularity-free inverse kinematics using dual-quaternionic error chains in the Davies method. Robotica.
Featherstone, R. (2014). Rigid body dynamics algorithms. New York: Springer.
Ivey, T. A., & Landsberg, J. M. (2003). Cartan for beginners: Differential geometry via moving frames and exterior differential systems, graduate studies in mathematics (Vol. 61). Providence: American mathematical society.
Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2009). Introduction à la commande des robots humanoïdes: De la modélisation à la génération du mouvement (translated by Sophie Sakka) (1st ed.). New York: Springer-verlag Paris.
McCarthy, J. (1990). An introduction to theoretical kinematics. Cambridge: MIT Press.
Murray, R. M., Li, Z., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, Corporate Blvd.
Pait, F.M., Colón, D. (2010). Some properties of the riemannian distance function and the position vector x, with applications to the construction of lyapunov functions. In: Proceedings of the 49th IEEE conference on decision and control (pp. 6277–6280).
Radavelli, L. A., De Pieri, E. R., Martins, D., & Simoni, R. (2014). Points, lines, screws and planes in dual quaternions kinematics. In O. Khatib & J. Lenarčič (Eds.), Advances in robot kinematics (pp. 285–293). New York: Springer International Publishing.
Radavellli, L.A., De Pieri, E.R., Martins, D., Simoni, R. (2014). A screw dual quaternion operator for serial robot kinematics. In: Proceedings of PACAM XIV, Santiago.
Sattinger, D. H., & Weaver, O. L. (1986). Applied mathematical sciences. Lie groups and algebras with applications to physics, geometry and mechanics (Vol. 61). New York: Springer.
Schwarz, A. S. (1996). Topology for physicists. Grundlehren der mathematischen Wissenschaften: A series of comprehensive studies im mathematics. New York: Springer.
Selig, J. M. (2005). Geometric fundamentals of robotics (2nd ed.). New York: Springer.
Sharpe, R. W. (1997). Differential geometry: Cartan generalization of Klein erlangen program. Graduate texts in mathematics (Vol. 166). New York: Springer.
Simoni, R., Doria, C.M., Martins, D. (2013). Symmetry and invariants of kinematic chains and parallel manipulators. Robotica 31.
Spivak, M. (2005). Comprehensive introduction to differential geometry, (Vol. 2, 3rd edn). Houston, TX: Publish or Perish, INC.
Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. Hoboken: Wiley.
Spong, M., & Vidyasagar, M. (1989). Robot dynamics and control. Hoboken: Wiley.
Tsai, L. (1999). Robot analysis: The mechanics of serial and parallel manipulators. New York: Wiley.
Yang, F. F. A. T. (1964). Application of dual-number quaternions algebra to the analysis of spatial mechanisms. Journal of Applied Mechanics, 31(2), 300–308.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Colón, D. Cartan Connections as a Tool for Kinematic Chain Calculation. J Control Autom Electr Syst 26, 630–641 (2015). https://doi.org/10.1007/s40313-015-0211-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40313-015-0211-5