Published online by Cambridge University Press: 12 September 2008
In this paper we consider the problem of estimating the spectral gap of a reversible Markov chain in terms of geometric quantities associated with the underlying graph. This quantity provides a bound on the rate of convergence of a Markov chain towards its stationary distribution. We give a critical and systematic treatment of this subject, summarizing and comparing the results of the two main approaches in the literature, algebraic and functional. The usefulness and drawbacks of these bounds are also discussed here.