[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Random walks on finite groups and rapidly mixing markov chains

  • Conference paper
  • First Online:
Séminaire de Probabilités XVII 1981/82

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 986))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 26.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 34.50
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALDOUS, D. J. (1982a). Some inequalities for reversible Markov chains. J. London Math. Soc. 25 564–576.

    Article  MathSciNet  MATH  Google Scholar 

  • ALDOUS, D. J. (1982b). Markov chains with almost exponential hitting times. Stochastic Processes Appl. 13, to appear.

    Google Scholar 

  • ALDOUS, D. J. (1983). On the time taken by a random walk on a finite group to visit every state. Zeitschrift fur Wahrscheinlichkeitstheorie, to appear.

    Google Scholar 

  • DIACONIS, P. (1982). Group theory in statistics. Preprint.

    Google Scholar 

  • DIACONIS, P. and SHAHSHAHANI, M. (1981). Generating a random permutation with random transpositions. Zeitschrift fur Wahrscheinlichkeitstheorie 57 159–179.

    Article  MathSciNet  MATH  Google Scholar 

  • DONNELLY, K. (1982). The probability that a relationship between two individuals is detectable given complete genetic information. Theoretical Population Biology, to appear.

    Google Scholar 

  • EPSTEIN, R. A. (1977). The Theory of Gambling and Statistical Logic (Revised Edition). Academic Press.

    Google Scholar 

  • FELLER, W. (1968). An Introduction to Probability Theory (3rd Edition). Wiley.

    Google Scholar 

  • GERBER, H.U. and LI, S.-Y. R. (1981). The occurrence of sequence patterns in repeated experiments and hitting times in a Markov chain. Stochastic Processes Appl. 11 101–108.

    Article  MathSciNet  MATH  Google Scholar 

  • KARLIN, S. and TAYLOR, H. M. (1975). A First Course in Stochastic Processes. Academic Press.

    Google Scholar 

  • KEILSON, J. (1979). Markov Chain Models—Rarity and Exponentiality. Springer-Verlag.

    Google Scholar 

  • KEMENY, J. G. and SNELL, J. L. (1959). Finite Markov Chains. Van Nostrand.

    Google Scholar 

  • KEMPERMAN, J. (1961). The First Passage Problem for a Stationary Markov Chain. IMS Statistical Research Monograph 1.

    Google Scholar 

  • LETAC, G. (1981). Problèmes classiques de probabilité sur un couple de Gelfand. Analytical Methods in Probability Theory, ed. D. Duglé et al. Springer Lecture Notes in Mathematics 861.

    Google Scholar 

  • LI, S.-Y. R. (1980). A martingale approach to the study of occurrence of sequence patterns in repeated experiments. Ann. Probability 8 1171–1176.

    Article  MathSciNet  MATH  Google Scholar 

  • REEDS, J. (1982). Unpublished notes.

    Google Scholar 

  • STOUT, W. F. (1974). Almost Sure Convergence. Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Azéma Marc Yor

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Aldous, D. (1983). Random walks on finite groups and rapidly mixing markov chains. In: Azéma, J., Yor, M. (eds) Séminaire de Probabilités XVII 1981/82. Lecture Notes in Mathematics, vol 986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0068322

Download citation

  • DOI: https://doi.org/10.1007/BFb0068322

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12289-0

  • Online ISBN: 978-3-540-39614-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics