[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An LSTM-Based Method for Automatic Reliability Prediction of Cognitive Radio Vehicular Ad Hoc Networks

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Reliability is a critical issue in vehicular networks. A deep learning (DL) method is proposed in this study to automatically predict the reliability of cognitive radio vehicular networks (CR-VANETs) ignored in the previous research. First, a dataset is generated based on a previously proposed method for the reliability assessment of CR-VANETs. Then, a model is proposed to predict the networks’ reliability using the DL method and compared with other machine learning methods. While machine learning methods have been applied in vehicular networks, they have not been used for reliability prediction. The proposed DL model is utilized in this research to predict CR-VANETs’ reliability. Based on the results, the DL model outperforms other machine learning methods for reliability prediction. The correlation coefficient and root mean square error of the test data for the DL model are 0.9862 and 0.0381, respectively. These results indicate the CR-VANETs’ reliability prediction accurately using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of Data and Materials

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Lin S, Wang Y, Jia L. System reliability assessment based on failure propagation processes. Complexity. 2018. https://doi.org/10.1155/2018/9502953.

    Article  Google Scholar 

  2. Kim Y, Kang W. Network reliability analysis of complex systems using a non-simulation-based method. Reliab Eng Syst Safe. 2013;110:80–8. https://doi.org/10.1016/j.ress.2012.09.012.

    Article  Google Scholar 

  3. Singh C, Jirutitijaroen P, Mitra J. Electric power grid reliability evaluation: models and methods. Cham: Wiley-IEEE; 2019. p. 117–64.

    Google Scholar 

  4. Saajid H, Di W, Memon S, Bux NK. ST reliability and connectivity of VANETs for different mobility environments. KSII T Internet Inf. 2019;13(5):2338–56. https://doi.org/10.3837/tiis.2019.05.006.

    Article  Google Scholar 

  5. Zeadally S, Guerrero J, Contreras J. A tutorial survey on vehicle-to-vehicle communications. Telecommun Syst. 2020;73:469–89. https://doi.org/10.1007/s11235-019-00639-8.

    Article  Google Scholar 

  6. Sadatpour V, Zargari F, Ghanbari M. A new cost function for improving anypath routing performance of VANETs in highways. Wirel Netw. 2019;25(4):1657–67. https://doi.org/10.1007/s11276-017-1620-0.

    Article  Google Scholar 

  7. Satheshkumar K, Mangai S. EE-FMDRP: energy efficient-fast message distribution routing protocol for vehicular ad-hoc networks. Ambient Intell Humaniz Comput. 2020;12:3877–88. https://doi.org/10.1007/s11276-017-1620-0.

    Article  Google Scholar 

  8. Dua A, Kumar N, Bawa S. ReIDD: reliability-aware intelligent data dissemination protocol for broadcast storm problem in vehicular ad hoc networks. Telecommun Syst. 2017;64:439–58. https://doi.org/10.1007/s11235-016-0184-0.

    Article  Google Scholar 

  9. Lim J, Naito K, Yun J, Cabric D, Gerla M. Safety message dissemination in NLOS environments of intersection using TV white space. In: International Conference on Computing, Networking and Communications, pp. 451–455.https://doi.org/10.1109/ICCNC.2015.7069386.

  10. Huang X, Wu J, Li W, Zhang Z, Zhu F, Wu M. Historical spectrum sensing data mining for cognitive radio enabled vehicular ad-hoc networks. IEEE Trans Depend Secure Comput. 2016;13(1):59–70. https://doi.org/10.1109/TDSC.2015.2453967.

    Article  Google Scholar 

  11. Bkassiny M, Li Y, Jayaweera SK. A survey on machine-learning techniques in cognitive radios. IEEE Commun Surv Tut. 2013;15(3):1136–59. https://doi.org/10.1109/SURV.2012.100412.00017.

    Article  Google Scholar 

  12. Singh KD, Rawat P, Bonnin JM. Cognitive radio for vehicular ad-hoc networks (CR-VANETs): approaches and challenges. EURASIP J Wirel Comm. 2014. https://doi.org/10.1186/1687-1499-2014-49.

    Article  Google Scholar 

  13. Gillani M, Niaz HA, Tayyab M. Role of machine learning in WSN and VANETs. J Electr Comput Eng Res. 2021;1(1):15–20. https://doi.org/10.53375/ijecer.2021.24.

    Article  Google Scholar 

  14. Bahramnejad S, Movahhedinia N. A fuzzy arithmetic-based analytical reliability assessment framework (FAARAF): case study, cognitive radio vehicular networks with drivers. Computing. 2021. https://doi.org/10.1007/s00607-021-00980-4.

    Article  Google Scholar 

  15. Marzak B, El Guemmat K, Benlahmar E, Talea M. Clustering in vehicular ad-hoc network using artificial neural network. Int Rev Comput Softw. 2016;11(6):548–56. https://doi.org/10.15866/irecos.v11i6.9328.

    Article  Google Scholar 

  16. Ghaleb F A, Zainal A, Rassam M A, Mohammed F. An effective misbehavior detection model using artificial neural network for vehicular ad hoc network applications. In: IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 13–18. https://doi.org/10.1109/AINS.2017.8270417.

  17. Bagherlou H, Ghaffari A. A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. J Supercomput. 2018;74:2528–52. https://doi.org/10.1007/s11227-018-2283-z.

    Article  Google Scholar 

  18. Liu T, Shi S, Gu X. Naive bayes classifier based driving habit prediction scheme for VANET stable clustering. In: Han, S, Ye, L, Meng W (eds) Artificial intelligence for communications and networks, AICON 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 286. Springer, Cham. 2019. https://doi.org/10.1007/978-3-030-22968-9_40.

  19. Karabulut M A, Shahen S A F M, Ilhan H. Performance optimization by using artificial neural network algorithms in VANETs. In: International Conference on Telecommunications and Signal Processing (TSP), 2019, pp. 633–636. https://doi.org/10.1109/TSP.2019.8768830.

  20. Adhikary K, Bhushan S, Kumar S, Dutta K. Hybrid algorithm to detect DDoS attacks in VANETs. Wireless Pers Commun. 2020;114:3613–34. https://doi.org/10.1007/s11277-020-07549-y.

    Article  Google Scholar 

  21. Bangui H, Ge M, Buhnova B. A hybrid data-driven model for intrusion detection in VANET. Procedia Comput Sci. 2021;184:516–23. https://doi.org/10.1016/j.procs.2021.03.065.

    Article  Google Scholar 

  22. Husnain G, Anwar S. An intelligent cluster optimization algorithm based on whale optimization algorithm for VANETs (WOACNET). PLoS ONE. 2021;16(4): e0250271. https://doi.org/10.1371/journal.pone.0250271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rehman A, Hassan MF, Hooi YK, Qureshi MA, Chung TD, Akbar R, Safdar S. Context and machine learning based trust management framework for Internet of vehicles. Comput Mater Continua. 2021;68(3):4125–42. https://doi.org/10.32604/CMC.2021.017620.

    Article  Google Scholar 

  24. Bangui H, Ge M, Buhnova B. A hybrid machine learning model for intrusion detection in VANET. Computing. 2022;104:503–31. https://doi.org/10.1007/s00607-021-01001-0.

    Article  Google Scholar 

  25. Teixeira LH, Huszák Á. Reinforcement learning environment for advanced vehicular ad hoc networks communication systems. Sensors. 2022;22:4732. https://doi.org/10.3390/s22134732.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Lv Y, Duan Y, Kang W, Li Z, Wang FY. Traffic flow prediction with big data: a deep learning approach. IEEE T Intell Transp. 2015;16(2):865–73. https://doi.org/10.1109/TITS.2014.2345663.

    Article  Google Scholar 

  27. Kang M J, Kang J W. A novel intrusion detection method using deep neural network for in-vehicle network security. In: IEEE Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5. https://doi.org/10.1109/VTCSpring.2016.7504089.

  28. Atallah R, Assi C, Khabbaz M. Deep reinforcement learning-based scheduling for roadside communication networks. In: International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2017; pp. 1–8. https://doi.org/10.23919/WIOPT.2017.7959912.

  29. Dairi A, Harrou F, Sun Y, Senouci M. Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme. IEEE Sens. 2018;18(12):5122–32. https://doi.org/10.1109/JSEN.2018.2831082.

    Article  Google Scholar 

  30. Hoel CJ, Wolff K, Laine L. Automated speed and lane change decision making using deep reinforcement learning. IEEE Int Conf Intell Transport Syst. 2018;2018:2148–55. https://doi.org/10.1109/ITSC.2018.8569568.

    Article  Google Scholar 

  31. Ye H, Li GY, Juang BH. Deep reinforcement learning for resource allocation in V2V communications. In: IEEE International Conference on Communications, 2018; pp. 1–5. https://doi.org/10.1109/ICC.2018.8422586.

  32. Jindal A, Aujla GS, Kumar N, Chaudhary R, Obaidat MS, You I. SeDaTiVe: SDN-enabled deep learning architecture for network traffic control in vehicular cyber-physical systems. IEEE Netw. 2018;32(6):66–73. https://doi.org/10.1109/MNET.2018.1800101.

    Article  Google Scholar 

  33. Li F, Zhang J, Szczerbicki E, Song J, Li R, Diao R. Deep learning-based intrusion system for vehicular ad hoc networks. Comput Mater Continua. 2020;65(1):653–81. https://doi.org/10.32604/cmc.2020.011264.

    Article  Google Scholar 

  34. Vitalkar RS, Thorat SS, Rojatkar DV. Intrusion detection system for vehicular ad-hoc network using deep learning. Int Res J Eng Technol. 2020;7(12):2294–300.

    Google Scholar 

  35. Karthiga B, Durairaj D, Nawaz N, Venkatasamy TK, Ramasamy G, Hariharasudan A. Intelligent intrusion detection system for VANET using machine learning and deep learning approaches. Wirel Commun Mob Com. 2022. https://doi.org/10.1155/2022/5069104.

    Article  Google Scholar 

  36. Kaur G, Kakkar D. Hybrid optimization enabled trust-based secure routing with deep learning-based attack detection in VANET. Ad Hoc Netw. 2022. https://doi.org/10.1016/j.adhoc.2022.102961.

    Article  Google Scholar 

  37. Yeruva AR, Alomari ES, Rashmi S, Shrivastava A, Kathiravan M, Chaturvedi A. A secure machine learning-based optimal routing in ad hoc networks for classifying and predicting vulnerabilities. Cybernet Syst. 2023. https://doi.org/10.1080/01969722.2023.2166241.

    Article  Google Scholar 

  38. Liu B, Xu G, Xu G, Wang C, Zuo P. Deep reinforcement learning-based intelligent security forwarding strategy for VANET. Sensors. 2023;23:1204. https://doi.org/10.3390/s23031204.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Abdellah A R, Koucheryavy A. VANET traffic prediction using LSTM with deep neural network learning. In: Galinina O et al. (eds) NEW2AN 2020/ruSMART 2020, LNCS 12525, 2020; pp 281–294.

  40. Hsu H Y, Cheng N H, Tsai C W. A deep learning-based integrated algorithm for misbehavior detection system in VANETs. In: ACM International Conference on Intelligent Computing and its Emerging Applications (ACM ICEA ‘21), December 28–29, Jinan, China. ACM, New York, NY, USA, 2021; p 6.

  41. Kareem JM, Trabelsi H. A novelty of hypergraph clustering model (HGCM) for urban scenario in VANET. IEEE Access. 2022;10(2022):66672–93. https://doi.org/10.1109/ACCESS.2022.3185075.

    Article  Google Scholar 

  42. Xiangyu L. Misbehavior detection based on deep learning for VANETs. In: International Conference on Networks, Communications and Information Technology (CNCIT), 2022; pp. 122–128.

  43. Heijden R W, Lukaseder T, Kargl F. VeReMi: a dataset for comparable evaluation of misbehavior detection in VANETs. In: Beyah R, Chang B, Li Y, Zhu S (eds) Security and privacy in communication networks. Secure Comm 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 254. Springer, Cham. https://doi.org/10.1007/978-3-030-01701-9_18.

  44. Christalin NS, Tapan KM, Prakash GL. A novel optimized LSTM networks for traffic prediction in VANET. J Syst Manag Sci. 2022;12(1):461–79. https://doi.org/10.33168/JSMS.2022.0130.

    Article  Google Scholar 

  45. Salim S, Lahcen O. CNN-LSTM based approach for dos attacks detection in wireless sensor networks. Int J Adv Comput Sci Appl. 2022;13(4):835–42.

    Google Scholar 

  46. Yi Z, Meikang Q, Dan Z, Zhihao X, Jian X, Meiqin L. DeepVCM: a deep learning based intrusion detection method in VANET. In: IEEE Intl Conference on Intelligent Data and Security, 2019; pp 288–293, https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00060.

  47. Ullah S, Khan MA, Ahmad J, Jamal SS, Huma Z, Hassan MT, Pitropakis N, Arshad Buchanan WJ. HDL-IDS: a hybrid deep learning architecture for intrusion detection in the internet of vehicles. Sensors. 2022;22:1340. https://doi.org/10.3390/s22041340.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Appaji I, Raviraj P. Framework for simulation of vehicular communication using LSTM-based graph attention networks. Indian J Sci Technol. 2023;16(16):1230–40. https://doi.org/10.17485/IJST/v16i16.1777.

    Article  Google Scholar 

  49. Luca P, Luciano R, Federico M. Energy management system optimization based on an LSTM deep learning model using vehicle speed prediction. Transport Eng. 2023. https://doi.org/10.1016/j.treng.2023.100160.

    Article  Google Scholar 

  50. Lingyun L, Xiang L, Guizhu W, Wei N. Multiband cooperative spectrum sensing meets vehicular network: relying on CNN-LSTM approach. Wirel Commun Mob Comput. 2023. https://doi.org/10.1155/2023/4352786.

    Article  Google Scholar 

  51. Alsaade FW, Al-Adhaileh MH. Cyber attack detection for self-driving vehicle networks using seep autoencoder algorithms. Sensors. 2023;23:4086. https://doi.org/10.3390/s23084086.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  52. Defeng D, Lu Z, Jiaying X, Jiaying L. In-vehicle network intrusion detection system based on Bi-LSTM. In: International Conference on Intelligent Computing and Signal Processing, 2022; pp. 580–583, https://doi.org/10.1109/ICSP54964.2022.9778620.

  53. Kushagra A, Tejasvi A, Ayush A, Vinay C, Abderrahim B. NovelADS: a novel anomaly detection system for intra-vehicular networks. IEEE Trans Intell Transp Syst. 2022;23(11):22596–606. https://doi.org/10.1109/TITS.2022.3146024.

    Article  Google Scholar 

  54. Omar Y, Aa-Jarrah KEH, Mehrdad D, Carsten M. A novel detection approach of unknown cyber-attacks for intra-vehicle networks using recurrence plots and neural networks. IEEE J Veh Technol. 2023;4:271–80. https://doi.org/10.1109/OJVT.2023.3237802.

    Article  Google Scholar 

  55. Bei S, Xudong L, Jiayuan W, Xuezhe W, Hao Y, Haifeng D. Short-term performance degradation prediction of a commercial vehicle fuel cell system based on CNN and LSTM hybrid neural network. Int J Hydrogen Energy. 2023;48:8613–28. https://doi.org/10.1016/j.ijhydene.2022.12.005.

    Article  CAS  Google Scholar 

  56. Wei L, Hamed A, Kutub T, Ahmad A, Subhash C, Gulshan K. A hybrid deep learning based intrusion detection system using spatial-temporal representation of in-vehicle network traffic. Veh Commun. 2022;35: 100471. https://doi.org/10.1016/j.vehcom.2022.100471.

    Article  Google Scholar 

  57. Roh Y, Heo G, Whang SE. A survey on data collection for machine learning: a big data-AI integration perspective. IEEE T Knowl Data En. 2021;33(4):1328–47. https://doi.org/10.1109/TKDE.2019.2946162.

    Article  Google Scholar 

  58. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.

    Article  CAS  PubMed  Google Scholar 

  59. Guillén-Navarro MA, Martínez-España R, Llanes A, Bueno-Crespo A, Cecilia JM. A deep learning model to predict lower temperatures in agriculture. J Ambient Intell Smart Environ. 2020;12(1):21–34. https://doi.org/10.3233/AIS-200546.

    Article  Google Scholar 

  60. Tohidi S, Sharifi Y. Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network. Thin Wall Struct. 2016;100:48–61. https://doi.org/10.1016/j.tws.2015.12.007.

    Article  Google Scholar 

  61. Boukerche A, Wang J. A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model. Ad Hoc Netw. 2020;106:1–10. https://doi.org/10.1016/j.adhoc.2020.102224.

    Article  Google Scholar 

  62. Witten I H, Frank E, Trigg L, Hall M, Holmes G, Cunningham S J. Weka: practical machine learning tools and techniques with Java implementations. In: Workshop on Emerging Knowledge Engineering and Connectionist-Based Information Systems, 1999; pp. 192–196.

Download references

Funding

We declare that no financial contributions or funding were received for the production of this research.

Author information

Authors and Affiliations

Authors

Contributions

SB and NM wrote and reviewed the manuscript. AN performed the experiments and provided the tables and diagrams in the experimental results section.

Corresponding author

Correspondence to Somayeh Bahramnejad.

Ethics declarations

Conflict of Interest

We declare that there are no conflicts of interest for this research.

Ethical Approval

We approve that this paper is original and not submitted to another journal simultaneously.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramnejad, S., Movahhedinia, N. & Naseri, A. An LSTM-Based Method for Automatic Reliability Prediction of Cognitive Radio Vehicular Ad Hoc Networks. SN COMPUT. SCI. 5, 291 (2024). https://doi.org/10.1007/s42979-024-02603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02603-z

Keywords

Navigation