[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
 
  • P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 16, Pages: 1230-1240

Original Article

Framework for Simulation of Vehicular Communication using LSTM-based Graph Attention Networks

Received Date:01 September 2022, Accepted Date:04 April 2023, Published Date:25 April 2023

Abstract

Objectives: To develop a computational framework which is capable of analyzing the realistic scenario with better decision-making of traffic management using enhanced learning-based model. Methods: A discrete baseline architecture is designed for proposed traffic model considering road network and properties of vehicles. A specific set of logical condition is formulated for constructing assumptions required for studies followed by formulating traffic environment. A reinforcement learning scheme is applied in order to obtain state attributes, action attributes, and reward attributes followed by subjecting all the attribute information to Long-Short Term Memory Attention network. The outcome of the model is inform of decision towards proper vehicular communication. The implementation is carried out by two dataset viz. Hangzou data and New York data. The prime parameter for the evaluation is average travel time while the comparison is carried out with multiple standard dataset. The simulated implementation of the proposed scheme is carried out on Hangzou simulation set up where topology for Internet-of-Vehicle (IoV) is executed on top of it. Findings: The study outcome exhibited significant improvement in average travel time of emergency as well as normal vehicles assessed with respect to various existing dataset of 6x6 uniflow, 6x6 biflow, Newyotk, and Hangzhou. The study outcome also exhibited Newyork to show approximately 85% of reduced travel time compared to 6x6 uniflow, 6x6 biflow, and Hangzou set up. This outcome was also found in agreement with power consumption where Hangzou set up was shown to offer approximately 96% of reduced power consumption in contrast to Newyork set up. Novelty: The proposed study contributes towards yielding a generalized assessment framework for traffic management which is capable of evaluating average travel time and power consumption unlike any existing system in cost effective manner.

Keywords: Vehicular communication System; Internetofthings; Reinforcement Learning; Decision Making; Long Short Term Memory; Graph attention Networks

References

  1. Chowdhury N, Mackenzie LM. Vehicular Communications for Smart Cars Protocols, Applications and Security Concerns. Taylor & Francis Limited. 2021. Available from: https://doi.org/10.1201/9781315110905
  2. Aulinas J, Sjafrie H, , . AI for Cars. CRC Press. 2021. Available from: https://doi.org/10.1201/9781003099512
  3. Xu W, Zhou H, Shen X. Internet Access in Vehicular Networks. Springer International Publishing. 2021. Available from: https://doi.org/10.1007/978-3-030-88991-3_1
  4. Singh SK. Road Traffic Accidents in India: Issues and Challenges. Transportation Research Procedia. 2017;25:4708–4719. Available from: https://doi.org/10.1016/j.trpro.2017.05.484
  5. Raes L, Michiels P, Adolphi T, Tampere C, Dalianis A, Mcaleer S, et al. DUET: A Framework for Building Interoperable and Trusted Digital Twins of Smart Cities. IEEE Internet Computing. 2022;26(3):43–50. Available from: https://doi.org/10.1109/MIC.2021.3060962
  6. Wu H, Zhang J, Cai Z, Liu F, Li Y, Liu A. Toward Energy-Aware Caching for Intelligent Connected Vehicles. IEEE Internet of Things Journal. 2020;7(9):8157–8166. Available from: https://doi.org/10.1109/JIOT.2020.2980954
  7. Xu W, Guo S, Ma S, Zhou H, Wu M, Zhuang W. Augmenting Drive-Thru Internet via Reinforcement Learning-Based Rate Adaptation. IEEE Internet of Things Journal. 2020;7(4):3114–3123. Available from: https://doi.org/10.1109/JIOT.2020.2965148
  8. Din IU, Ahmad B, Almogren AB, Almajed H, Mohiuddin I, Rodrigues JJPC. Left-Right-Front Caching Strategy for Vehicular Networks in ICN-Based Internet of Things. IEEE Access. 2021;9:595–605. Available from: https://doi.org/10.1109/ACCESS.2020.3046887
  9. Vasudev H, Deshpande V, Das D, Das SK. A Lightweight Mutual Authentication Protocol for V2V Communication in Internet of Vehicles. IEEE Transactions on Vehicular Technology. 2020;69(6):6709–6717. Available from: https://doi.org/10.1109/TVT.2020.2986585
  10. Benarous L, Bitam S, Mellouk A. CSLPPS: Concerted Silence-Based Location Privacy Preserving Scheme for Internet of Vehicles. IEEE Transactions on Vehicular Technology. 2021;70(7):7153–7160. Available from: https://doi.org/10.1109/TVT.2021.3088762
  11. Ni Y, Cai L, He J, Vinel A, Li Y, Mosavat-Jahromi H, et al. Toward Reliable and Scalable Internet of Vehicles: Performance Analysis and Resource Management. Proceedings of the IEEE. 2020;108(2):324–340. Available from: https://doi.org/10.1109/JPROC.2019.2950349
  12. Silva R, Iqbal R. Ethical Implications of Social Internet of Vehicles Systems. IEEE Internet of Things Journal. 2019;6(1):517–531. Available from: https://doi.org/10.1109/JIOT.2018.2841969
  13. Sharma P, Liu H. A Machine-Learning-Based Data-Centric Misbehavior Detection Model for Internet of Vehicles. IEEE Internet of Things Journal. 2021;8(6):4991–4999. Available from: https://doi.org/10.1109/JIOT.2020.3035035
  14. Wang X, Han S, Yang L, Yao T, Li L. Parallel Internet of Vehicles: ACP-Based System Architecture and Behavioral Modeling. IEEE Internet of Things Journal. 2020;7(5):3735–3746. Available from: https://doi.org/10.1109/JIOT.2020.2969693
  15. Qureshi KN, Idrees MM, Lloret J, Bosch I. Self-Assessment Based Clustering Data Dissemination for Sparse and Dense Traffic Conditions for Internet of Vehicles. IEEE Access. 2020;8:10363–10372. Available from: https://doi.org/10.1109/ACCESS.2020.2964530
  16. Fu F, Kang Y, Zhang Z, Yu FR, Wu T. Soft Actor–Critic DRL for Live Transcoding and Streaming in Vehicular Fog-Computing-Enabled IoV. IEEE Internet of Things Journal. 2021;8(3):1308–1321. Available from: https://doi.org/10.1109/JIOT.2020.3003398
  17. Xue Z, Liu Y, Han G, Ayaz F, Sheng Z, Wang Y. Two-Layer Distributed Content Caching for Infotainment Applications in VANETs. IEEE Internet of Things Journal. 2022;9(3):1696–1711. Available from: https://doi.org/10.1109/JIOT.2021.3089280
  18. Sonmez C, Tunca C, Ozgovde A, Ersoy C. Machine Learning-Based Workload Orchestrator for Vehicular Edge Computing. IEEE Transactions on Intelligent Transportation Systems. 2021;22(4):2239–2251. Available from: https://doi.org/10.1109/TITS.2020.3024233
  19. Hong X, Jiao J, Peng A, Shi J, Wang CX. Cost Optimization for On-Demand Content Streaming in IoV Networks With Two Service Tiers. IEEE Internet of Things Journal. 2019;6(1):38–49. Available from: https://doi.org/10.1109/JIOT.2018.2873085
  20. Hou L, Lei L, Zheng K, Wang X. A $Q$ -Learning-Based Proactive Caching Strategy for Non-Safety Related Services in Vehicular Networks. IEEE Internet of Things Journal. 2019;6(3):4512–4520. Available from: https://doi.org/10.1109/JIOT.2018.2883762
  21. Xia S, Lin F, Chen Z, Tang C, Ma Y, Yu X. A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for Blockchain-Enabled Internet of Vehicles. IEEE Transactions on Vehicular Technology. 2020;69(7):6856–6868. Available from: https://doi.org/10.1109/TVT.2020.2990443
  22. Su Z, Dai M, Xu Q, Li R, Zhang H. UAV Enabled Content Distribution for Internet of Connected Vehicles in 5G Heterogeneous Networks. IEEE Transactions on Intelligent Transportation Systems. 2021;22(8):5091–5102. Available from: https://doi.org/10.1109/TITS.2020.3043351
  23. Heo S, Yoo W, Jang H, Chung JM. H-V2X Mode 4 Adaptive Semipersistent Scheduling Control for Cooperative Internet of Vehicles. IEEE Internet of Things Journal. 2021;8(13):10678–10692. Available from: https://doi.org/10.1109/JIOT.2020.3048993

Copyright

© 2023 Appaji & Raviraj. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee

DON'T MISS OUT!

Subscribe now for latest articles and news.