Abstract
Urinary tract infection (UTI) represents the most common infection after kidney transplantation; it is associated with an increased risk for acute kidney rejection and impaired graft function in the early post-transplant period. Kidney transplant recipients with UTIs are often clinically asymptomatic due to the immunosuppressive therapy; however, asymptomatic bacteriuria may progress to acute pyelonephritis, bacteremia and urosepsis, particularly in the early post-transplant period, that are independent risk factors for short and long-term graft and patient survival. This article reviews the definitions, incidence, risk factors and the management of UTI in kidney transplant recipients; furthermore, the main controversial and still unanswered questions, regarding the causes of recurrent UTIs, adequate use of antibiotics to avoid antibiotic resistance, dosing and timing for prophylaxis and treatment of symptomatic infections, are also discussed. The emerging definition of urinary microbiota introduces new concepts in understanding the complexity of the disease and might represent the future target for therapeutic interventions.
Similar content being viewed by others
References
Karuthu S, Blumberg EA (2012) Common infections in kidney transplant recipients. Clin J Am Soc Nephrol 7:2058–2070. https://doi.org/10.2215/CJN.04410512
Rice JC, Safdar N (2009) Urinary tract infections in solid organ transplant recipients. Am J Transplant 9(Suppl 4):S267–S272. https://doi.org/10.1111/j.1600-6143.2009.02919.x
Alangaden GJ, Thyagarajan R, Gruber SA et al (2006) Infectious complications after kidney transplantation: current epidemiology and associated risk factors. Clin Transplant 20:401–409. https://doi.org/10.1111/j.1399-0012.2006.00519.x
Bodro M, Sabe N, Tubau F et al (2013) Risk factors and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in solid-organ transplant recipients. Transplantation 96:843–849. https://doi.org/10.1097/TP.0b013e3182a049fd
Castaneda DA, Leon K, Martin R et al (2013) Urinary tract infection and kidney transplantation: a review of diagnosis, causes, and current clinical approach. Transplant Proc 45:1590–1592. https://doi.org/10.1016/j.transproceed.2013.01.014
de CR Ferreira, Cristelli F, Paula MP et al (2017) Infectious complications as the leading cause of death after kidney transplantation: analysis of more than 10,000 transplants from a single center. J Nephrol 30:601–606. https://doi.org/10.1007/s40620-017-0379-9
Ariza-Heredia EJ, Beam EN, Lesnick TG et al (2014) Impact of urinary tract infection on allograft function after kidney transplantation. Clin Transplant 28:683–690. https://doi.org/10.1111/ctr.12366
Lorenz EC, Cosio FG (2010) The impact of urinary tract infections in renal transplant recipients. Kidney Int 78:719–721. https://doi.org/10.1038/ki.2010.219
Grabe M, Bjerklund-Johansen TE, Botto H et al (2015) Guidelines on urological infections. European Association of Urology, London
Lee JR, Bang H, Dadhania D et al (2013) Independent risk factors for urinary tract infection and for subsequent bacteremia or acute cellular rejection: a single-center report of 1166 kidney allograft recipients. Transplantation 96:732–738. https://doi.org/10.1097/TP.0b013e3182a04997
Ariza-Heredia EJ, Beam EN, Lesnick TG et al (2013) Urinary tract infections in kidney transplant recipients: role of gender, urologic abnormalities, and antimicrobial prophylaxis. Ann Transplant 18:195–204. https://doi.org/10.12659/AOT.883901
Veroux M, Giuffrida G, Corona D et al (2008) Infective complications in renal allograft recipients: epidemiology and outcome. Transplant Proc 40:1873–1876. https://doi.org/10.1016/j.transproceed.2008.05.065
Saemann M, Horl WH (2008) Urinary tract infection in renal transplant recipients. Eur J Clin Investig 38 (Suppl 2):58–65. https://doi.org/10.1111/j.1365-2362.2008.02014.x
Pelle G, Vimont S, Levy PP et al (2007) Acute pyelonephritis represents a risk factor impairing long-term kidney graft function. Am J Transplant 7:899–907. https://doi.org/10.1111/j.1600-6143.2006.01700.x
Senger SS, Arslan H, Azap OK et al (2007) Urinary tract infections in renal transplant recipients. Transplant Proc 39:1016–1017. https://doi.org/10.1016/j.transproceed.2007.02.060
Abbott KC, Swanson SJ, Richter ER et al (2004) Late urinary tract infection after renal transplantation in the United States. Am J Kidney Dis 44:353–362
Valera B, Gentil MA, Cabello V et al (2006) Epidemiology of urinary infections in renal transplant recipients. Transplant Proc 38:2414–2415. https://doi.org/10.1016/j.transproceed.2006.08.018
Dantas SRPE, Kuboyama RH, Mazzali M, Moretti ML (2006) Nosocomial infections in renal transplant patients: risk factors and treatment implications associated with urinary tract and surgical site infections. J Hosp Infect 63:117–123. https://doi.org/10.1016/j.jhin.2005.10.018
Silva C, Afonso N, Macario F et al (2013) Recurrent urinary tract infections in kidney transplant recipients. Transplant Proc 45:1092–1095. https://doi.org/10.1016/j.transproceed.2013.02.019
Korth J, Kukalla J, Rath P-M et al (2017) Increased resistance of gram-negative urinary pathogens after kidney transplantation. BMC Nephrol 18:164. https://doi.org/10.1186/s12882-017-0580-z
Parasuraman R, Julian K (2013) Urinary tract infections in solid organ transplantation. Am J Transplant 13 (Suppl 4):327–336. https://doi.org/10.1111/ajt.12124
Linares L, Cervera C, Cofan F et al (2007) Epidemiology and outcomes of multiple antibiotic-resistant bacterial infection in renal transplantation. Transplant Proc 39:2222–2224. https://doi.org/10.1016/j.transproceed.2007.06.061
Safdar N, Slattery WR, Knasinski V et al (2005) Predictors and outcomes of candiduria in renal transplant recipients. Clin Infect Dis 40:1413–1421. https://doi.org/10.1086/429620
Fisher JF, Sobel JD, Kauffman CA, Newman CA (2011) Candida urinary tract infections-treatment. Clin Infect Dis 52 (Suppl 6):S457–S466. https://doi.org/10.1093/cid/cir112
Chuang P, Parikh CR, Langone A (2005) Urinary tract infections after renal transplantation: a retrospective review at two US transplant centers. Clin Transplant 19:230–235. https://doi.org/10.1111/j.1399-0012.2005.00327.x
Jung GO, Chun JM, Park JB et al (2008) Clinical significance of posttransplantation vesicoureteral reflux during short-term period after kidney transplantation. Transplant Proc 40:2339–2341. https://doi.org/10.1016/j.transproceed.2008.06.027
Meier-Kriesche HU, Ojo A, Hanson J et al (2000) Increased immunosuppressive vulnerability in elderly renal transplant recipients. Transplantation 69:885–889
Trouillhet I, Benito N, Cervera C et al (2005) Influence of age in renal transplant infections: cases and controls study. Transplantation 80:989–992
Sqalli TH, Laboudi A, Arrayhani M et al (2008) Urinary tract infections in renal allograft recipients from living related donors. Saudi J Kidney Dis Transplant 19:551–553
Memikoglu KO, Keven K, Sengul S et al (2007) Urinary tract infections following renal transplantation: a single-center experience. Transplant Proc 39:3131–3134. https://doi.org/10.1016/j.transproceed.2007.10.005
Kamath NS, John GT, Neelakantan N et al (2006) Acute graft pyelonephritis following renal transplantation. Transplant Infect Dis 8:140–147. https://doi.org/10.1111/j.1399-3062.2006.00148.x
Tandogdu Z, Cai T, Koves B et al (2016) Urinary tract infections in immunocompromised patients with diabetes, chronic kidney disease, and kidney transplant. Eur Urol Focus 2:394–399. https://doi.org/10.1016/j.euf.2016.08.006
Papasotiriou M, Savvidaki E, Kalliakmani P et al (2011) Predisposing factors to the development of urinary tract infections in renal transplant recipients and the impact on the long-term graft function. Ren Fail 33:405–410. https://doi.org/10.3109/0886022X.2011.568137
Wu X, Dong Y, Liu Y et al (2016) The prevalence and predictive factors of urinary tract infection in patients undergoing renal transplantation: a meta-analysis. Am J Infect Control 44:1261–1268. https://doi.org/10.1016/j.ajic.2016.04.222
Pascual J, Galeano C, Royuela A, Zamora J (2010) A systematic review on steroid withdrawal between 3 and 6 months after kidney transplantation. Transplantation 90:343–349. https://doi.org/10.1097/TP.0b013e3181e58912
Hanvesakul R, Kubal C, Jham S et al (2008) Increased incidence of infections following the late introduction of mycophenolate mofetil in renal transplant recipients. Nephrol Dial Transplant 23:4049–4053. https://doi.org/10.1093/ndt/gfn387
Jarzembowski T, Daca A, Witkowski J et al (2013) Changes of PBP5 gene expression in enterococcal isolates from renal transplantation recipients. Biomed Res Int 2013:687156. https://doi.org/10.1155/2013/687156
Mulvey MA (2002) Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271
Anderson GG, Martin SM, Hultgren SJ (2004) Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 6:1094–1101. https://doi.org/10.1016/j.micinf.2004.05.023
Justice SS, Hung C, Theriot JA et al (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338. https://doi.org/10.1073/pnas.0308125100
Wolfe AJ, Toh E, Shibata N et al (2012) Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol 50:1376–1383. https://doi.org/10.1128/JCM.05852-11
Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J et al (2011) Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 8:449
Lundstedt A-C, McCarthy S, Gustafsson MCU et al (2007) A genetic basis of susceptibility to acute pyelonephritis. PLoS One 2:e825. https://doi.org/10.1371/journal.pone.0000825
Lyerova L, Lacha J, Skibova J et al (2001) Urinary tract infection in patients with urological complications after renal transplantation with respect to long-term function and allograft survival. Ann Transplant 6:19–20
Trzeciak S, Sharer R, Piper D et al (2004) Infections and severe sepsis in solid-organ transplant patients admitted from a university-based ED. Am J Emerg Med 22:530–533
Rao KV, Andersen RC (1988) Long-term results and complications in renal transplant recipients. Observations in the second decade. Transplantation 45:45–52
Schmaldienst S, Dittrich E, Horl WH (2002) Urinary tract infections after renal transplantation. Curr Opin Urol 12:125–130
Dupont PJ, Psimenou E, Lord R et al (2007) Late recurrent urinary tract infections may produce renal allograft scarring even in the absence of symptoms or vesicoureteric reflux. Transplantation 84:351–355. https://doi.org/10.1097/01.tp.0000275377.09660.fa
Tawab KA, Gheith O, Al Otaibi T et al (2017) Recurrent urinary tract infection among renal transplant recipients: risk factors and long-term outcome. Exp Clin Transplant 15:157–163. https://doi.org/10.6002/ect.2016.0069
Pesce F, Martino M, Fiorentino M et al (2019) Recurrent urinary tract infections in kidney transplant recipients during the first-year influence long-term graft function: a single-center retrospective cohort study. J Nephrol. https://doi.org/10.1007/s40620-019-00591-5
Mitra S, Alangaden GJ (2011) Recurrent urinary tract infections in kidney transplant recipients. Curr Infect Dis Rep 13:579–587. https://doi.org/10.1007/s11908-011-0210-z
El Amari EB, Hadaya K, Buhler L et al (2011) Outcome of treated and untreated asymptomatic bacteriuria in renal transplant recipients. Nephrol Dial Transplant 26:4109–4114. https://doi.org/10.1093/ndt/gfr198
Green H, Rahamimov R, Gafter U et al (2011) Antibiotic prophylaxis for urinary tract infections in renal transplant recipients: a systematic review and meta-analysis. Transplant Infect Dis 13:441–447. https://doi.org/10.1111/j.1399-3062.2011.00644.x
(2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 9 Suppl 3:S1–S155. https://doi.org/10.1111/j.1600-6143.2009.02834.x
Horwedel TA, Bowman LJ, Saab G, Brennan DC (2014) Benefits of sulfamethoxazole-trimethoprim prophylaxis on rates of sepsis after kidney transplant. Transplant Infect Dis 16:261–269. https://doi.org/10.1111/tid.12196
Ziakas PD, Pliakos EE, Zervou FN et al (2014) MRSA and VRE colonization in solid organ transplantation: a meta-analysis of published studies. Am J Transplant 14:1887–1894. https://doi.org/10.1111/ajt.12784
Garzoni C, Vergidis P (2013) Methicillin-resistant, vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus infections in solid organ transplantation. Am J Transplant 13:50–58. https://doi.org/10.1111/ajt.12098
Kullar R, Davis SL, Levine DP et al (2011) High-dose daptomycin for treatment of complicated gram-positive infections: a large, multicenter, retrospective study. Pharmacother J Hum Pharmacol Drug Ther 31:527–536. https://doi.org/10.1592/phco.31.6.527
Russell DL, Flood A, Zaroda TE et al (2008) Outcomes of colonization with MRSA and VRE among liver transplant candidates and recipients. Am J Transplant 8:1737–1743. https://doi.org/10.1111/j.1600-6143.2008.02304.x
Patel R, Gallagher JC (2015) Vancomycin-resistant enterococcal bacteremia pharmacotherapy. Ann Pharmacother 49:69–85. https://doi.org/10.1177/1060028014556879
Chuang Y-C, Wang J-T, Lin H-Y, Chang S-C (2014) Daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bacteremia: systematic review and meta-analysis. BMC Infect Dis 14:687. https://doi.org/10.1186/s12879-014-0687-9
Yuan X, Liu T, Wu D, Wan Q (2018) Epidemiology, susceptibility, and risk factors for acquisition of MDR/XDR Gram-negative bacteria among kidney transplant recipients with urinary tract infections. Infect Drug Resist 11:707–715. https://doi.org/10.2147/IDR.S163979
Cervera C, van Delden C, Gavaldà J et al (2014) Multidrug-resistant bacteria in solid organ transplant recipients. Clin Microbiol Infect 20:49–73. https://doi.org/10.1111/1469-0691.12687
Sousa D, Castelo-Corral L, Gutierrez-Urbon J-M et al (2013) Impact of ertapenem use on Pseudomonas aeruginosa and Acinetobacter baumannii imipenem susceptibility rates: collateral damage or positive effect on hospital ecology? J Antimicrob Chemother 68:1917–1925. https://doi.org/10.1093/jac/dkt091
Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377. https://doi.org/10.1056/NEJMoa010307
Livigni S, Bertolini G, Rossi C et al (2014) Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open 4:e003536. https://doi.org/10.1136/bmjopen-2013-003536
Whiteside SA, Razvi H, Dave S et al (2015) The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol 12:81–90. https://doi.org/10.1038/nrurol.2014.361
Pearce MM, Hilt EE, Rosenfeld AB et al (2014) The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. MBio 5:e01283–e01214. https://doi.org/10.1128/mBio.01283-14
Siddiqui H, Lagesen K, Nederbragt AJ et al (2012) Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol 12:205. https://doi.org/10.1186/1471-2180-12-205
Fouts DE, Pieper R, Szpakowski S et al (2012) Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 10:174. https://doi.org/10.1186/1479-5876-10-174
Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053
Hummelen R, Macklaim JM, Bisanz JE et al (2011) Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS One 6:e26602. https://doi.org/10.1371/journal.pone.0026602
Gupta K, Hillier SL, Hooton TM et al (2000) Effects of contraceptive method on the vaginal microbial flora: a prospective evaluation. J Infect Dis 181:595–601. https://doi.org/10.1086/315267
Habash MB, Van der Mei HC, Busscher HJ, Reid G (1999) The effect of water, ascorbic acid, and cranberry derived supplementation on human urine and uropathogen adhesion to silicone rubber. Can J Microbiol 45:691–694
Swann JR, Tuohy KM, Lindfors P et al (2011) Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 10:3590–3603. https://doi.org/10.1021/pr200243t
Barclay J, Veeratterapillay R, Harding C (2017) Non-antibiotic options for recurrent urinary tract infections in women. BMJ 359:j5193. https://doi.org/10.1136/bmj.j5193
O’Kane DB, Dave SK, Gore N et al (2016) Urinary alkalisation for symptomatic uncomplicated urinary tract infection in women. Cochrane Database Syst Rev 4:CD010745. https://doi.org/10.1002/14651858.CD010745.pub2
Schwenger EM, Tejani AM, Loewen PS (2015) Probiotics for preventing urinary tract infections in adults and children. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008772.pub2
Perrotta C, Aznar M, Mejia R et al (2008) Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005131.pub2
Jepson RG, Craig JC (2007) A systematic review of the evidence for cranberries and blueberries in UTI prevention. Mol Nutr Food Res 51:738–745. https://doi.org/10.1002/mnfr.200600275
Jepson RG, Williams G, Craig JC (2012) Cranberries for preventing urinary tract infections. Cochrane Database Syst Rev 10:CD001321. https://doi.org/10.1002/14651858.CD001321.pub5
Kranjcec B, Papes D, Altarac S (2014) d-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J Urol 32:79–84. https://doi.org/10.1007/s00345-013-1091-6
Ferry SA, Holm SE, Stenlund H et al (2004) The natural course of uncomplicated lower urinary tract infection in women illustrated by a randomized placebo controlled study. Scand J Infect Dis 36:296–301
Acknowledgements
The results presented in this study have not been published elsewhere in whole or part. All authors approved the final version of the submitted manuscript.
Funding
None.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have declared no competing interests.
Ethical approval
This article does not contain any studies with human participants performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fiorentino, M., Pesce, F., Schena, A. et al. Updates on urinary tract infections in kidney transplantation. J Nephrol 32, 751–761 (2019). https://doi.org/10.1007/s40620-019-00585-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40620-019-00585-3