[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Nanomedicine to Overcome Current Parkinson’s Treatment Liabilities: A Systematic Review

  • Review
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Nanoparticles might be produced and manipulated to present a large spectrum of properties. The physicochemical features of the engineered nanomaterials confer to them different features, including the ability to cross the blood–brain barrier. The main objective of this review is to present the state-of-art research in nano manipulation concerning Parkinson’s disease (PD). In the past few years, the association of drugs with nanoparticles solidly improved treatment outcomes. We systematically reviewed 28 studies, describing their potential contributions regarding the role of nanomedicine to increase the efficacy of known pharmacological strategies for PD treatment. Data from animal models resulted in the (i) improvement of pharmacological properties, (ii) more stable drug concentrations, (iii) longer half-live and (iv) attenuation of pharmacological adverse effects. As this approach is recent, with many of the described works being published less than 5 years ago, the expectancy is that this knowledge gives support to an improvement in the current clinical methods to the management of PD and other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Graph 1
Graph 2

Similar content being viewed by others

References

  • Abuirmeileh A, Harkavyi A, Kingsbury A, Lever R, Whitton PS (2008) The CRF-like peptide urocortin produces a long-lasting recovery in rats made hemiparkinsonian by 6-hydroxydopamine or lipopolysaccharide. J Neurol Sci 271:131–136

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Mishra P, Shivange G, Kodipelli N, Moros M, de La Fuente JM, Anindya R (2015) Citrate-capped gold nanoparticles for the label-free detection of ubiquitin C-terminal hydrolase-1. Analyst 140:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Azeem A, Talegaonkar S, Negi LM, Ahmad FJ, Khar RK, Iqbal Z (2012) Oil based nanocarrier system for transdermal delivery of ropinirole: a mechanistic, pharmacokinetic and biochemical investigation. Int J Pharm 422:436–444

    Article  CAS  PubMed  Google Scholar 

  • Barbosa MT, Caramelli P, Maia DP, Cunningham MC, Guerra HL, Lima-Costa MF, Cardoso F (2006) Parkinsonism and Parkinson’s disease in the elderly: a community-based survey in Brazil (the Bambuí study). Mov Disord 21:800–808

    Article  PubMed  Google Scholar 

  • Bonina F, Puglia C, Rimoli MG, Melisi D, Boatto G, Nieddu M, Calignano A, La Rana G, De Caprariis P (2003) Glycosyl derivatives of dopamine and L-dopa as anti-Parkinson prodrugs: synthesis, pharmacological activity and in vitro stability studies. J Drug Target 11:25–36

    CAS  PubMed  Google Scholar 

  • Bortolanza M, Bariotto-dos-Santos KD, dos-Santos-Pereira M, da-Silva CA, Del-Bel EA (2016) Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson’s Disease. Neurotox Res 30:88

  • Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E (2015a) Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 73:377–387

    Article  CAS  PubMed  Google Scholar 

  • Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E (2015b) Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson’s disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 5(1672):370

    Google Scholar 

  • Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L (2014) Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int J Nanomed 9:575–588

    Article  Google Scholar 

  • Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337:1–24

    Article  CAS  PubMed  Google Scholar 

  • Da Rocha Lindner G, Bonfanti Santos D, Colle D, Gasnhar Moreira EL, Daniel Prediger R, Farina M, Khalil NM, Mara Mainardes R (2015) Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond) 10:1127–1138

    Article  Google Scholar 

  • De Giglio E, Trapani A, Cafagna D, Sabbatini L, Cometa S (2011) Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Anal Bioanal Chem 400:1997–2002

    Article  PubMed  Google Scholar 

  • Demirel M, Yazan Y, Müller RH, Kiliç F, Bozan B (2001) Formulation and in vitro-in vivo evaluation of piribedil solid lipid micro- and nanoparticles. J Microencapsul 18:359–371

    Article  CAS  PubMed  Google Scholar 

  • Di Gioia S, Trapani A, Mandracchia D, De Giglio E, Cometa S, Mangini V, Arnesano F, Belgiovine G, Castellani S, Pace L, Lavecchia MA, Trapani G, Conese M, Puglisi G, Cassano T (2015) Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur J Pharm Biopharm 94:180–193

    Article  PubMed  Google Scholar 

  • Dos-Santos-Pereira M, da-Silva CA, Guimarães FS, Del-Bel EA (2016) Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: possible mechanism of action. Neurobiol Dis 94:179–195

    Article  CAS  PubMed  Google Scholar 

  • Drexler E (1986) Engines of construction. Engines of creation: the coming era of nanotechnology. Anchor, New York, pp 3–17

  • Esposito E, Fantin M, Marti M, Drechsler M, Paccamiccio L, Mariani P, Sivieri E, Lain F, Menegatti E, Morari M, Cortesi R (2008) Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 25:1521–1530

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Mariani P, Ravani L, Contado C, Volta M, Bido S, Drechsler M, Mazzoni S, Menegatti E, Morari M, Cortesi R (2012) Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur J Pharm Biopharm 80:306–314

    Article  CAS  PubMed  Google Scholar 

  • Feynman R (1959). RE: Plenty of room at the bottom

  • Fletcher AM, Kowalczyk TH, Padegimas L, Cooper MJ, Yurek DM (2011) Transgene expression in the striatum following intracerebral injections of DNA nanoparticles encoding for human glial cell line-derived neurotrophic factor. Neuroscience 194:220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca-Santos B, Gremião MP, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 10:4981–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA (2014) Increasing the efficiency of parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) Based L-DOPA delivery system. Exp Neurobiol 23:246–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbayo E, Ansorena E, Blanco-Prieto MJ (2013) Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas 76(3):272–278

    Article  CAS  PubMed  Google Scholar 

  • Gomes MZ, Raisman-Vozari R, Del Bel EA (2008) A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Res 1203:160–169

  • González-Aparicio R, Moratalla R (2014) Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV-1 receptor in a mouse model of Parkinson s disease. Neurobiol Dis 62:416–425

    Article  PubMed  Google Scholar 

  • Gulati N, Nagaich U, Saraf S (2014) Fabrication and in vitro characterization of polymeric nanoparticles for Parkinson’s therapy: a novel approach. Braz J Pharm Sci 50(4):869–876

    Article  Google Scholar 

  • Hamidi M, Azadi A, Rafiei P, Ashrafi H (2013) A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Crit Rev Ther Drug Carrier Syst 30:435–467

    Article  CAS  PubMed  Google Scholar 

  • Haney MJ, Zhao Y, Li S, Higginbotham SM, Booth SL, Han HY, Vetro JA, Mosley RL, Kabanov AV, Gendelman HE, Batrakova EV (2011) Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells. Nanomedicine (Lond) 6:1215–1230

    Article  CAS  Google Scholar 

  • Hasadsri L, Kreuter J, Hattori H, Iwasaki T, George JM (2009) Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem 284:6972–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen T (2014) Clinical insights into use of apomorphine in Parkinson’s disease: tools for clinicians. Neurodegener Dis Manag 4:271–282

    Article  PubMed  Google Scholar 

  • Herrán E, Requejo C, Ruiz-Ortega JA, Aristieta A, Igartua M, Bengoetxea H, Ugedo L, Pedraz JL, Lafuente JV, Hernández RM (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 9:2677–2687

    PubMed  PubMed Central  Google Scholar 

  • Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X (2011) Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 415:273–283

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Han L, Li J, Ren F, Ke W, Jiang C, Pei Y (2009) Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med 11(9):754–763

    Article  CAS  PubMed  Google Scholar 

  • Hwang TL, Lin YK, Chi CH, Huang TH, Fang JY (2009) Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery. J Pharm Sci 98:3735–3747

    Article  CAS  PubMed  Google Scholar 

  • Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE (2015) Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine 10(6):993–1018

  • Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, Bhatnagar A, Ali J (2014) Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm, pp 1–8

  • Joshi N, Basak S, Kundu S, De G, Mukhopadhyay A, Chattopadhyay K (2015) Attenuation of the early events of α-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanoparticles. Langmuir 31:1469–1478

    Article  CAS  PubMed  Google Scholar 

  • Kaye CM, Nicholls B (2000) Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet 39:243–254

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Palmiter RD, Cummins A, Gerfen CR (2006) Reversal of supersensitive striatal dopamine D1 receptor signaling and extracellular signal-regulated kinase activity in dopamine-deficient mice. Neuroscience 137:1381–1388

    Article  CAS  PubMed  Google Scholar 

  • Ksendzovsky A, Walbridge S, Saunders RC, Asthagiri AR, Heiss JD, Lonser RR (2012) Convection-enhanced delivery of M13 bacteriophage to the brain. J Neurosurg 117:197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV (2015) Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: a mini review. J Drug Target 1-14

  • Kura AU (2014) Toxicity and metabolism of layered double hydroxide intercalated with levodopa in a Parkinson’s disease model. Int J Mol Sci 15(4):5916–5927

    Article  PubMed  PubMed Central  Google Scholar 

  • Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P (2013) Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int J Nanomedicine 8:1103–1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee TJ, Haque F, Shu D, Yoo JY, Li H, Yokel RA, Horbinski C, Kim TH, Kim SH, Kwon CH, Nakano I, Kaur B, Guo P, Croce CM (2015) RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget 6(17):14766–14776

    Article  PubMed  PubMed Central  Google Scholar 

  • López T, Bata-García JL, Esquivel D, Ortiz-Islas E, Gonzalez R, Ascencio J, Quintana P, Oskam G, Alvarez-Cervera FJ, Heredia-López FJ, Góngora-Alfaro JL (2011) Treatment of Parkinson’s disease: nanostructured sol-gel silica-dopamine reservoirs for controlled drug release in the central nervous system. Int J Nanomedicine 6:19–31

    Article  Google Scholar 

  • Malvindi MA, Di Corato R, Curcio A, Melisi D, Rimoli MG, Tortiglione C, Tino A, George C, Brunetti V, Cingolani R, Pellegrino T, Ragusa A (2011) Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine. Nanoscale 3:5110–5119

    Article  CAS  PubMed  Google Scholar 

  • Marconi S, Zwingers T (2014) Comparative efficacy of selegiline versus rasagiline in the treatment of early Parkinson’s disease. Eur Rev Med Pharmacol Sci 18:1879–1882

    CAS  PubMed  Google Scholar 

  • Martinez AA, Morgese MG, Pisanu A, Macheda T, Paquette MA, Seillier A, Cassano T, Carta AR, Giuffrida A (2015) Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Neurobiol Dis 74:295–304

    Article  CAS  PubMed  Google Scholar 

  • Md S, Haque S, Fazil M, Kumar M, Baboota S, Sahni JK, Ali J (2014) Optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method. Expert Opin Drug Deliv 11:827–842

    Article  CAS  PubMed  Google Scholar 

  • Mercante LA, Pavinatto A, Iwaki LE, Scagion VP, Zucolotto V, Oliveira ON, Mattoso LH, Correa DS (2015) Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces 7:4784–4790

    Article  CAS  PubMed  Google Scholar 

  • Mittal D, Md S, Hasan Q, Fazil M, Ali A, Baboota S, Ali J (2014) Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv

  • Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(264–9):W64

    Google Scholar 

  • Mustafa G, Ahuja A, Al Rohaimi AH, Muslim S, Hassan AA, Baboota S, Ali J (2015) Nano-ropinirole for the management of Parkinsonism: blood-brain pharmacokinetics and carrier localization. Expert Rev Neurother 15:695–710

    Article  CAS  PubMed  Google Scholar 

  • Nyholm D (2006) Pharmacokinetic optimisation in the treatment of Parkinson’s disease: an update. Clin Pharmacokinet 45:109–136

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW (2004) The scientific basis for the current treatment of Parkinson’s disease. Annu Rev Med 55:41–60

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, Langston W, Melamed E, Poewe W, Stocchi F, Tolosa E (2009) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 361:1268–1278

    Article  CAS  PubMed  Google Scholar 

  • Padovan-Neto FE, Echeverry MB, Tumas V, Del-Bel E (2009) Nitric oxide synthase inhibition attenuates L-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neuroscience 159(3):927–935

    Article  CAS  PubMed  Google Scholar 

  • Padovan-Neto FE, Ferreira NR, de Oliveira-Tavares D, de Aguiar D, da Silva CA, Raisman-Vozari R, Del Bel E (2013) Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/deltaFosB expression. Neurosci Lett 541(29):126–131

    Article  CAS  PubMed  Google Scholar 

  • Padovan-Neto FE, Cavalcanti-Kiwiatkoviski R, Carolino RO, Anselmo-Franci J, Del Bel E (2015) Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology 89:87–99

    Article  CAS  PubMed  Google Scholar 

  • Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LK, Saxena PN, Arun J, Chaudhari BP, Patel DK, Singh SP, Shukla R, Khanna VK, Kumar P, Chaturvedi RK, Gupta KC (2015) Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 9:4850–4871

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi CV, Belgamwar VS, Tekade AR, Surana SJ (2013a) Novel surface modified polymer-lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J Mater Sci Mater Med 24:2101–2115

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ (2013b) Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv 20:47–56

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Song HS, Kwon OS, Chung JH, Lee SH, An JH, Ahn SR, Lee JE, Yoon H, Park TH, Jang J (2014) Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors. Sci Rep 4:4342

    PubMed  PubMed Central  Google Scholar 

  • Pathak K, Akhtar N (2016) Nose to Brain Delivery of nanoformulations for neurotherapeutics in Parkinson`s disease: defining the preclinical. Curr Drug Deliv, Clinical and toxicity issues. doi:10.2174/1567201813666160607123409

    Google Scholar 

  • Patil GB, Surana SJ (2013) Fabrication and statistical optimization of surface engineered PLGA nanoparticles for naso-brain delivery of ropinirole hydrochloride: in vitro-ex vivo studies. J Biomater Sci Polym Ed 24:1740–1756

    Article  CAS  PubMed  Google Scholar 

  • Perez-Lloret S, Rascol O (2011) Safety of rasagiline for the treatment of Parkinson’s disease. Expert Opin Drug Saf 10:633–643

    Article  CAS  PubMed  Google Scholar 

  • Pillay S, Pillay V, Choonara YE, Naidoo D, Khan RA, Du Toit LC, Ndesendo VM, Modi G, Danckwerts MP, Iyuke SE (2009) Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int J Pharm 382:277–290

    Article  CAS  PubMed  Google Scholar 

  • Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A, Doudnikoff E, Martin-Négrier ML, Chuan Q, Bloch B, Choquet D, Boué-Grabot E, Groc L, Bezard E (2012) PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest 122(11):3977–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JF, Whittaker MR, Davis TP (2015) Delivering nitric oxide with nanoparticles. J Control Release 205:190–205

    Article  CAS  PubMed  Google Scholar 

  • Radad K, Gille G, Rausch WD (2005) Short review on dopamine agonists: insight into clinical and research studies relevant to Parkinson’s disease. Pharmacol Rep 57:701–712

    CAS  PubMed  Google Scholar 

  • Re F, Gregori M, Masserini M (2012) Nanotechnology for neurodegenerative disorders. Maturitas 73(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-DeDiego I, Mellstrom B, Vallejo M, Naranjo JR, Moratalla R (2015a) Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice. Biol Psychiatry 77(2):95–105

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-DeDiego I, Naranjo JR, Hervé D, Moratalla R (2015b) Dopaminergic regulation of olfactory type G-protein α subunit expression in the striatum. Mov Disord 30(8):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2013) Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 26:395–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25

    Article  CAS  PubMed  Google Scholar 

  • Shadab Md, Shadabul H, Mohammad F, Manish K, Sanjula B, Jasjeet K, Javed A (2014) Optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method. Expert Opin Drug Deliv 11(6):827–842

  • Sharma S, Lohan S, Murthy RSR (2013) Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 40(7):869–878

  • Singh S, Sharma A, Robertson GP (2012) Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res 72:5663–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W, Jenner P (2005) Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov Disord 20:306–314

    Article  PubMed  Google Scholar 

  • So RQ, Mcconnell GC, August AT, Grill WM (2012) Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemi-Parkinsonian rats. IEEE Trans Neural Syst Rehabil Eng 20:626–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Solís O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 73:49–59

    Article  PubMed  Google Scholar 

  • Spuch C, Saida O, Navarro C (2012) Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat Drug Deliv Formul. 6(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Stocchi F (2005) Optimising levodopa therapy for the management of Parkinson’s disease. J Neurol 252(4):43–48

    Google Scholar 

  • Svendsen P, El-Galaly TC, Dybkær K, Bøgsted M, Laursen MB, Schmitz A, Jensen P, Johnsen HE (2015) The Application of Human Phase 0 Microdosing Trials - a Systematic Review and Perspectives. Leuk Lymphoma 57(6):1–28

    Google Scholar 

  • Takuma K, Tanaka T, Takahashi T, Hiramatsu N, Ota Y, Ago Y, Matsuda T (2012) Neuronal nitric oxide synthase inhibition attenuates the development of L - DOPA -induced dyskinesia in hemi -Parkinsonian rats. Eur J Pharmacol 683:166–173

    Article  CAS  PubMed  Google Scholar 

  • Tan JM, Foo JB, Fakurazi S, Hussein MZ (2015) Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes. Beilstein J Nanotechnol 6:243–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Telischak IVM, Feng ND, Holdsworth SJ, Yeom KW, Daldrup-Link HE (2015) Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond) 10:993–1018

    Article  Google Scholar 

  • Trapani A, De Giglio E, Cafagna D, Denora N, Agrimi G, Cassano T, Gaetani S, Cuomo V, Trapani G (2011) Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 419:296–307

    Article  CAS  PubMed  Google Scholar 

  • Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, Tsai YH (2011) Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci 100:547–557

    Article  CAS  PubMed  Google Scholar 

  • Watt KM, KC K, Cohen-Wolkowiez M (2013) Phase I Trials: First in Human. In: RENATO D LOPES RAH. (ed.) Understanding Clinical Research. Lange (Mc Graw Hill Education)

  • Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, Zhang Q, Jiang X, Fang L, Lai R (2011) Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 151:131–138

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Deng Y, Qing H (2015) The phosphorylation of α-synuclein: development and implication for the mechanism and therapy of the Parkinson’s disease. J Neurochem 135(1):4–18

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zheng R, Cai Y, Liao M, Yuan W, Liu Z (2012) Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int J Nanomed 7:2077–2086

    CAS  Google Scholar 

  • Yue K, Guduru R, Hong J, Liang P, Nair M, Khizroev S (2012) Magneto-electric nano-particles for non-invasive brain stimulation. PLoS ONE 7:e44040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by Cesumar Institute of Science, Technology and Innovation (ICETI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcelo Picinin Bernuci or Ana Carolina Issy.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawthorne, G.H., Bernuci, M.P., Bortolanza, M. et al. Nanomedicine to Overcome Current Parkinson’s Treatment Liabilities: A Systematic Review. Neurotox Res 30, 715–729 (2016). https://doi.org/10.1007/s12640-016-9663-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9663-z

Keywords

Navigation