[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The present investigation describes a formulative study for the development of innovative drug delivery systems for bromocriptine.

Methods

Solid lipid nanoparticles (SLN) based on different lipidic components have been produced and characterized. Morphology and dimensional distribution have been investigated by electron microscopy and Photon Correlation Spectroscopy. The antiparkinsonian activities of free bromocriptine and bromocriptine encapsulated in nanostructured lipid carriers were evaluated in 6-hydroxydopamine hemilesioned rats, a model of Parkinson’s disease.

Results

Tristearin/tricaprin mixture resulted in nanostructured lipid carriers with stable mean diameter up to 6 months from production. Bromocriptine was encapsulated with high entrapment efficiency in all of the SLN samples, particularly in the case of tristearin/tricaprin mixture. Bromocriptine encapsulation did not change nanoparticle dimensions. In vitro release kinetics based on a dialysis method demonstrated that bromocriptine was released in a prolonged fashion for 48 h. Tristearin/tricaprin nanoparticles better controlled bromocriptine release. Both free and encapsulated bromocriptine reduced the time spent on the blocks (i.e. attenuated akinesia) in the bar test, although the action of encapsulated bromocriptine was more rapid in onset and prolonged.

Conclusions

It can be concluded that nanostructured lipid carriers encapsulation may represent an effective strategy to prolong the half-life of bromocriptine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Bunjes, M. Drechsler, M. H. J. Koch, and K. Westesen. Incorporation of the Model Drug Ubidecarenone into Solid Lipid Nanoparticles. Pharm. Res. 18:287–293 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. K. Westesen and B. Siekmann. Biodegradable colloidal drug carrier systems based on solid lipids. In S. Benita (ed.), Microencapsulation, Marcel Dekker, New York, 1996, pp. 213–258.

    Google Scholar 

  3. K. Westesen, H. Bunjes, and M.H.J. Koch. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Rel. 48:223–23 (1997).

    Article  CAS  Google Scholar 

  4. R.H. Muller, K. Mader, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled delivery-a review of the state of the art. Eur J Pharm Biopharm. 50:161–177 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. W. Mehnert, and K. Mader. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 47:165–196 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. A. Dingler, and S.H. Gohla. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul 19:11–18 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. V. Jenning, A. Lippacher, and S.H. Gohla. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenisation. J Microencapsul 19:1–10 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. A. Lippacher, R.H. Muller, and K. Mader. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 214:9–12 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. A.V. Kabanov, and E.V. Batrakova. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Des. 10:1355–1363 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. J. Temsamani, J. M. Scherrmann, A. R. Rees, and M. Kaczorek. Brain drug delivery technologies: novel approaches for transporting therapeutics. PSTT. 3:2000 (2000).

    Google Scholar 

  11. E.H. Lo, A.B. Singhal, V.P. Torchilin, and N.J. Abbott. Drug delivery to damaged brain. Brain Res Brain Res Rev. 38:140–148 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. N. Bodor, and P. Buchwald. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Ad. Drug Deliv Rev. 36:229–254 (1999).

    Article  CAS  Google Scholar 

  13. T. Terasaki, and K. Hosoya. The blood–brain barrier efflux transporters as a detoxifying system for the brain. Adv Drug Deliv Rev. 36:195–209 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. E. Garcia-Garcia, K. Andrieux, S. Gilb, and P. Couvreur. Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain. Int J Pharm. 298:274–292 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. A.J. Hughes, S.E. Daniel, S. Blankson, and A.J. Lees. Clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol. 50:140–148 (1993).

    PubMed  CAS  Google Scholar 

  16. O. Rascol, C. Goetz, W. Koller, W. Poewe, and C. Sampaio. Treatment interventions for parkinson’s disease: an evidence based assessment. Lancet. 359:1589–1598 (2002).

    Article  PubMed  Google Scholar 

  17. J.A. Obeso, C.W. Olanow, and J.G. Nutt. Levodopa motor complications in Parkinson’s disease. Trends Neurosci. 23:S2–S7 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. J.A. Obeso, F. Grandas, M.T. Herrero, and R. Horowski. The role of pulsatile versus continuous dopamine receptor stimulation for functional recovery in Parkinson's disease. Eur J Neurosci. 6:889–897 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. T. Kvermo, S. Hartter, and E. Burger. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 28:1065–1078 (2006).

    Article  Google Scholar 

  20. R.K.B. Pearce, T. Banerji, P. Jenner, and C.D. Marsden. De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-DOPA in the MPTP-treated marmoset. Mov Disord. 13:234–241 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. R.K.W. Schwarting, and J.P. Huston. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol. 50:275–331 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. E. Esposito, N. Eblovi, S. Rasi, M. Drechsler, G. M. Di Gregorio, E. Menegatti, and R. Cortesi. Lipid based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci. 5:4 Article 30 (2003).

    Article  Google Scholar 

  23. D.E. Koppel. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. J. Chem. Phys. 57:4814–4820 (1972).

    Article  CAS  Google Scholar 

  24. http://en.wikipedia.org/wiki/Dynamic_light_scattering.

  25. R. Pecora. Dynamic Light Scattering Measurement of Nanometer Particles in Liquids J. Nanoparticle Res. 2:123–131 (2000).

    Article  CAS  Google Scholar 

  26. P. Mariani, V. Luzzati, and H. Delacroix. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 204:165–189 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. M. Marti, F. Mela, M. Fantin, S. Zucchini, J.M. Brown, J. Witta, M. DiBenedetto, B. Buzas, R.K. Reinscheid, S. Salvadori, R. Guerrini, P. Romualdi, S. Candeletti, M. Simonato, B.M. Cox, and M. Morari. Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci. 95:9591–9601 (2005).

    Article  Google Scholar 

  28. G. Paxinos and C. Watson. The rat brain in stereotaxic coordinates. Ed. Academic, Sydney (1982).

  29. U. Ungerstedt, and G.W. Arbuthnott. Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 24:485–493 (1970).

    Article  PubMed  CAS  Google Scholar 

  30. M. Marti, C. Trapella, R. Viaro, and M. Morari. The nociceptin/orphanin FQ receptor antagonist J-113397 and L-DOPA additively attenuate experimental parkinsonism through overinhibition of the nigrothalamic pathway. J Neurosci. 27:1297–1307 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. P.R. Sanberg, M.D. Bunsey, M. Giordano, and A.B. Norman. The catalepsy test: ist ups and downs. Behav Neurosci. 102:748–759 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann, and K. Maeder. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release. 95:217–227 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. J.C. Olivier, L. Fenart, R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res. 16:1836–1842 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. J. Kreuter. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 47:65–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. S. Ulrike, S. Petra, U. Sven, and B.A. Sabel. Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci. 87:1305–1307 (1998).

    Article  Google Scholar 

  36. R.P. Lockmana, M.O. Oyewumi, J.M. Koziara, K.E. Roder, R.J. Mumper, and D.D. Allen. Brain uptake of thiamine-coated nanoparticles. J. Control Release. 93:271–282 (2003).

    Article  Google Scholar 

  37. Z.R. Zhang, J.X. Wang, and J. Lu. Optimization of the preparation of 30,50-dioctanoyl-5-fluoro-20-deoxyuridine pharmacosomes using central composite design. Acta Pharmaceutica Sinica. 36:461–465 (2001).

    Google Scholar 

  38. Y.X. Peng, Y.L. Zhuang, and G.T. Liao. Study on bone marrow targeting daunorubicin polybutylcyanoacrylate nanoparticles. Chin. J. Pharm. 31:57–61 (2000).

    CAS  Google Scholar 

  39. S.M. Moghimi. Mechanisms regulating body distribution of nanospheres conditioned with pluronic and tetronic block co-polymers. Adv. Drug Deliv. Rev. 16:183–186 (1995).

    Article  CAS  Google Scholar 

  40. P. Calvo, B. Gouritin, H. Villarroya, F. Eclancher, C. Giannavola, C. Klein, J.P. Andreux, and P. Couvreur. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur. J. Neurosci. 15:1317–1326 (2002).

    Article  PubMed  Google Scholar 

  41. I. Brigger, J. Morizet, G. Aubert, H. Chacun, M.J. Terrier-Lacombe, P. Couvreur, and G. Vassal. Poly(ethylene glycol)- coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J. Pharmacol Exp. Ther. 303:928–936 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. J. Kreuter. Delivery of loperamide across the blood-brain barrier with Polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 14:325–328 (1997).

    Article  PubMed  Google Scholar 

  43. J.M. Koziara, P.R. Lockman, D.D. Allen, and R.J. Mumper. In situ blood-brain barrier transport of nanoparticles. Pharm. Res. 20:1772–1778 (2003).

    CAS  Google Scholar 

  44. S.C. Yang, L.F. Lu, Y. Cai, J.B. Zhu, B.W. Liang, and C.Z. Yang. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control Release. 59:299–307 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. S.B. Tiwari, and M.M. Amiji. A Review of Nanocarrier-Based CNS Delivery Systems. Current Drug Delivery. 3:219–232 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. E.L. Lane, S.C. Cheetam, and P. Jenner. Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson's disease. Exp. Neurol. 197:284–290 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Fabrizio Bortolotti (University of Ferrara) for HPLC technical assistance. This work was supported by Regione Emilia Romagna, Spinner Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Esposito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, E., Fantin, M., Marti, M. et al. Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine. Pharm Res 25, 1521–1530 (2008). https://doi.org/10.1007/s11095-007-9514-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9514-y

Key words

Navigation