Abstract
Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.
Similar content being viewed by others
References
E.J. Calvo: Chapter 1 fundamentals. The basics of electrode reactions. In Comprehensive Chemical Kinetics, C.H. Bamford and R.G. Compton, eds. (Elsevier, Amsterdam, The Netherlands, 1986); p. 1.
M. Ciobanu, J.P. Wilburn, M.L. Krim, and D.E. Cliffel: 1-Fundamentals. In Handbook of Electrochemistry, C.G. Zoski, ed. (Elsevier, Amsterdam, The Netherlands2007); p. 3.
R.L. William and P.O. Mark: Voltammetry. In Analytical Instrumentation Handbook, 3rd ed., J. Cazes, ed. (CRC Press, Boca Raton, Florida, 2004); p. 529.
J.C. Myland and K.B. Oldham: Uncompensated resistance. 1. The effect of cell geometry. Anal. Chem. 72(17), 3972 (2000).
J. Wang: Analytical Electrochemistry (John Wiley & Sons, Hoboken, New Jersey, 2006).
M.S. Farash, M. Turkanović, S. Kumari, and M. Hölbl: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment. Ad Hoc Networks 36, 152 (2016).
K. Arshak, K. Twomey, D. Heffernan, and I. Ieee: Development of a novel humidity sensor with error-compensated measurement system. In 2002 23rd International Conference on Microelectronics, Vol. 1, Proceedings (IEEE, Niš, Yugoslavia, 2002); p. 215.
K.I. Arshak and K. Twomey: Investigation into a novel humidity sensor operating at room temperature. Microelectron. J. 33(3), 213 (2002).
C. Goumopoulos, B. O’Flynn, and A. Kameas: Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Comput. Electron. Agric. 105, 20 (2014).
V.I. Ogurtsov, K. Twomey, and G. Herzog: Development of an integrated electrochemical sensing system to monitor port water quality using autonomous robotic fish. In Comprehensive Materials Processing, Vol. 13, S. Hashmi, ed. (Elsevier, Amsterdam, The Netherlands, 2014); p. 317.
A. Lawlor, J. Torres, B. O’Flynn, J. Wallace, and F. Regan: Deploy: A long term deployment of a water quality sensor monitoring system. Sens. Rev. 32, 29 (2012).
G. Herzog, W. Moujahid, K. Twomey, C. Lyons, and V.I. Ogurtsov: On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 116, 26 (2013).
K. Twomey, E.A. de Eulate, J. Alderman, and D. Arrigan: Fabrication and characterization of a miniaturized planar voltammetric sensor array for use in an electronic tongue. Sens. Actuators, B 140, 532 (2009).
K. Twomey, L. Nagle, A. Said, F. Barry, and V. Ogurtsov: Characterisation of nanoporous gold for use in a dissolved oxygen sensing application. J. Bionanosci. 5(1), 55 (2015).
C.M. Caffrey, O. Chevalerias, C.O. Mathuna, and K. Twomey: Swallowable-capsule technology. IEEE Pervasive Comput. 7, 23 (2008).
A. Hickling: Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode. Trans. Faraday Soc. 38, 27 (1942).
C. Mc Caffrey: Development of circuitry and software for a diagnostic swallowable capsule. In Department of Microelectronics and Tyndall National Institute, UCC (University College Cork, Cork, Ireland, 2008); p. 216.
R.F.B. Turner, D.J. Harrison, and H.P. Baltes: A CMOS potentiostat for amperometric chemical sensors. IEEE J. Solid-State Circuits 22, 473 (1987).
R.J. Reay, S.P. Kounaves, and G.T.A. Kovacs: An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation. In Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC, 1994 IEEE International (Editions Frontières, Gif-sur-Yvette, France, 1994); p. 162.
A. Bandyopadhyay, G. Mulliken, G. Cauwenberghs, and N. Thakor: VLSI potentiostat array for distributed electrochemical neural recording. In Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on (IEEE, Phoenix-Scottsdale, Arizona, 2002); p. II.
K. Murari, N. Thakor, M. Stanacevic, and G. Cauwenberghs: Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing. In Engineering in Medicine and Biology Society, 2004. IEMBS’ 04. 26th Annual International Conference of the IEEE, Vol. 2 (IEEE, San Francisco, California, 2004); p. 4063.
J. Galandova, G. Ziyatdinova, and J. Labuda: Disposable electrochemical biosensor with multiwalled carbon nanotubes—Chitosan composite layer for the detection of deep DNA damage. Anal. Sci. 2, 711 (2008).
P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. Op De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens: Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actuators, B 49, 73–80 (1998).
E. Katz and I. Willner: Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15, 913–947 (2003).
L. Moreno-Hagelsieb, B. Foultier, G. Laurent, R. Pampin, J. Remacle, J.P. Raskin, and D. Flandre: Electrical detection of DNA hybridization: Three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens. Bioelectron. 22, 2199–2207 (2007).
J.S. Daniels and N. Pourmand: Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 19, 1239–1257 (2007).
J.E. Trancik, S. Calabrese Barton, and J. Hone: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982–987 (2008).
Y. Yun, R. Gollapudi, V. Shanov, M.J. Schulz, Z. Dong, A. Jazieh, W.R. Heineman, H.B. Halsall, D.K. Wong, A. Bange, Y. Tu, and S. Subramaniam: Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing. J. Nanosci. Nanotechnol. 7, 891–897 (2007).
K.A. Law and S.P.J. Higson: Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides. Biosens. Bioelectron. 20, 1914–1924 (2005).
Z. Zou, J. Kai, M.J. Rust, J. Han, and C.H. Ahn: Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators, A 136, 518–526 (2007).
E. Moore, O. Rawley, T. Wood, and P. Galvin: Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors. Sens. Actuators, B 139, 187–193 (2009).
L. Ceriotti, A. Kob, S. Drechsler, J. Ponti, E. Thedinga, P. Colpo, R. Ehret, and F. Rossi: Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal. Biochem. 371, 92–104 (2007).
W. Hu, A.S. Crouch, D. Miller, M. Aryal, and K.J. Luebke: Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation. Nanotechnology 21, 385301 (2010).
W. Messina, M. Fitzgerald, and E. Moore: SEM and ECIS investigation of cells cultured on nanopillar modified interdigitated impedance electrodes for analysis of cell growth and cytotoxicity of potential anticancer drugs. Electroanalysis 28, 2188–2195 (2016).
J. Lee, M.J. Cuddihy, and N.A. Kotov: Three-dimensional cell culture matrices: State of the art. Tissue Eng., Part B 14, 61–86 (2008).
I.D. Raistrick, D.R. Franceschetti, and J.R. Macdonald: Chapter 2. Theory. In Impedance Spectroscopy; Theory, Experiment, and Applications, 2nd ed., E. Barsoukov and J.R. Macdonald, eds. (Wiley Interscience Publications, Toronto, Canada, 2005); pp. 123–128.
I. Giaever and C.R. Keese: Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. U. S. A. 88, 7896–7900 (1991).
J. Wegener, C.R. Keese, and I. Giaever: Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259, 158–166 (2000).
S. Belkin: Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206–212 (2003).
C.R. Keese, J. Wegener, S.R. Walker, and I. Giaever: Electrical wound-healing assay for cells in vitro. Proc. Natl. Acad. Sci. U. S. A. 101, 1554–1559 (2004).
S. Arndt, J. Seebach, K. Psathaki, H-J. Galla, and J. Wegener: Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron. 19, 583–594 (2004).
C. Xiao and J.H.T. Luong: Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicol. Appl. Pharmacol. 206, 102–112 (2005).
D. Opp, B. Wafula, J. Lim, E. Huang, J.C. Lo, and C.M. Lo: Use of electric cell–substrate impedance sensing to assess in vitro cytotoxicity. Biosens. Bioelectron. 24, 2625–2629 (2009).
C.E. Campbell, M.M. Laane, E. Haugarvoll, and I. Giaever: Monitoring viral-induced cell death using electric cell–substrate impedance sensing. Biosens. Bioelectron. 23, 536–542 (2007).
W.H. van der Schalie, R.R. James, and T.P. Gargan, II: Selection of a battery of rapid toxicity sensors for drinking water evaluation. Biosens. Bioelectron. 22, 18–27 (2006).
J. Wang: Electrochemical glucose biosensors. Chem. Rev. 108, 814 (2008).
A. Heller and B. Feldman: Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482 (2008).
K. Tian, M. Prestgard, and A. Tiwari: A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng., C 41, 100 (2014).
C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, and S. Yao: Recent advances in electrochemical glucose biosensors: A review. RSC Adv. 3, 4473 (2013).
J. Hu: The evolution of commercialized glucose sensors in China. Biosens. Bioelectron. 24(5), 1083 (2009).
W. Dröge: Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47 (2002).
M.M. Rahman, A.J.S. Ahammad, J-H. Jin, S.J. Ahn, and J-J. Lee: A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855 (2010).
C.I.L. Justino, T.A. Rocha-Santos, A.C. Duarte, and T.A. Rocha-Santos: Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC, Trends Anal. Chem. 29, 1172 (2010).
S. Park, H. Boo, and T.D. Chung: Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556(1), 46 (2006).
K.E. Toghill and R.G. Compton: Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246 (2010).
P. Si, Y. Huang, T. Wang, and J. Ma: Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3, 3487 (2013).
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 (2003).
E.P. Lee, J. Chen, Y. Yin, C.T. Campbell, and Y. Xia: Pd-catalyzed growth of Pt nanoparticles or nanowires as dense coatings on polymeric and ceramic particulate supports. Adv. Mater. 18, 3271 (2006).
Y. Sun and Y. Xia: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Nature 353, 737 (1991).
T. Hanrath and B.A. Korgel: Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv. Mater. 15, 437 (2003).
Z.L. Wang: Nanowires and Nanobelts: Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires (Springer Science & Business Media, New York, New York, 2013).
V. Anandan, Y.L. Rao, and G. Zhang: Nanopillar array structures for enhancing biosensing performance. Int. J. Nanomed. 1, 73 (2006).
H. Wang, X. Wang, X. Zhang, X. Qin, Z. Zhao, Z. Miao, N. Huang, and Q. Chen: A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens. Bioelectron. 25, 142 (2009).
F. Qu, M. Yang, G. Shen, and R. Yu: Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosens. Bioelectron. 22, 1749 (2007).
S.M. Choi, J.H. Kim, J.Y. Jung, E.Y. Yoon, and W.B. Kim: Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation. Electrochim. Acta 53, 5804 (2008).
N.S. Birenbaum, B.T. Lai, C.S. Chen, D.H. Reich, and G.J. Meyer: Selective noncovalent adsorption of protein to bifunctional metallic nanowire surfaces. Langmuir 19, 9580 (2003).
R. Wilson and A. Turner: Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 7, 165 (1992).
L. Wang, X. Gao, L. Jin, Q. Wu, Z. Chen, and X. Lin: Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sens. Actuators, B 176, 9 (2013).
Y. Lu, M. Yang, F. Qu, G. Shen, and R. Yu: Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry 71, 211 (2007).
M. Delvaux and S. Demoustier-Champagne: Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 18, 943 (2003).
J.C. Claussen, M.M. Wickner, T.S. Fisher, and D.M. Porterfield: Transforming the fabrication and biofunctionalization of gold nanoelectrode arrays into versatile electrochemical glucose biosensors. ACS Appl. Mater. Interfaces 3, 1765 (2011).
Z. Wen, S. Ci, and J. Li: Pt nanoparticles inserting in carbon nanotube arrays: Nanocomposites for glucose biosensors. J. Phys. Chem. C 113, 13482 (2009).
J. Liu, C. Guo, C.M. Li, Y. Li, Q. Chi, X. Huang, L. Liao, and T. Yu: Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun. 11, 202 (2009).
D. Pradhan, F. Niroui, and K. Leung: High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl. Mater. Interfaces 2, 2409 (2010).
C-W. Hsu and G-J. Wang: Highly sensitive glucose biosensor based on Au–Ni coaxial nanorod array having high aspect ratio. Biosens. Bioelectron. 56, 204 (2014).
X. Yang, Y. Wang, Y. Liu, and X. Jiang: A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochim. Acta 108, 39 (2013).
Z. Yang, Y. Tang, J. Li, Y. Zhang, and X. Hu: Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens. Bioelectron. 54, 528 (2014).
Y. Xie and W. Wang: Bioelectrocatalytic performance of glucose oxidase/nitrogen-doped titania nanotube array enzyme electrode. J. Chem. Technol. Biotechnol. 91, 1403 (2015).
K. Qu, P. Shi, J. Ren, and X. Qu: Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chem.–Eur. J. 20, 7501 (2014).
Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, and L. Jin: ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens. Bioelectron. 26, 275 (2010).
X. Liu, Q. Hu, Q. Wu, W. Zhang, Z. Fang, and Q. Xie: Aligned ZnO nanorods: A useful film to fabricate amperometric glucose biosensor. Colloids Surf., B 74, 154 (2009).
K. Yang, G-W. She, H. Wang, X-M. Ou, X-H. Zhang, C-S. Lee, and S-T. Lee: ZnO nanotube arrays as biosensors for glucose. J. Phys. Chem. C 113, 20169 (2009).
J. Zang, C.M. Li, X. Cui, J. Wang, X. Sun, H. Dong, and C.Q. Sun: Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008 (2007).
X. Jia, G. Hu, F. Nitze, H.R. Barzegar, T. Sharifi, C-W. Tai, and T. Wågberg: Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection. ACS Appl. Mater. Interfaces 5, 12017 (2013).
D. Patil, N.Q. Dung, H. Jung, S.Y. Ahn, D.M. Jang, and D. Kim: Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectron. 31, 176 (2012).
Z. Wang, S. Liu, P. Wu, and C. Cai: Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem. 81, 1638 (2009).
K.K. Lee, P.Y. Loh, C.H. Sow, and W.S. Chin: CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 20, 128 (2012).
L. Yang, Y. Zhang, M. Chu, W. Deng, Y. Tan, M. Ma, X. Su, Q. Xie, and S. Yao: Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell. Biosens. Bioelectron. 52, 105 (2014).
S. Cherevko and C-H. Chung: Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens. Actuators, B 142, 216 (2009).
Y. Zhao, J. Chu, S.H. Li, W.W. Li, G. Liu, Y.C. Tian, and H.Q. Yu: Non-enzymatic electrochemical detection of glucose with a gold nanowire array electrode. Electroanalysis 26, 656 (2014).
Y. Bai, Y. Sun, and C. Sun: Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens. Bioelectron. 24, 579 (2008).
S.S. Mahshid, S. Mahshid, A. Dolati, M. Ghorbani, L. Yang, S. Luo, and Q. Cai: Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 58, 551 (2011).
J. Yuan, K. Wang, and X. Xia: Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 15, 803 (2005).
Y. Li, X. Niu, J. Tang, M. Lan, and H. Zhao: A comparative study of nonenzymatic electrochemical glucose sensors based on Pt–Pd nanotube and nanowire arrays. Electrochim. Acta 130, 1 (2014).
L-M. Lu, L. Zhang, F-L. Qu, H-X. Lu, X-B. Zhang, Z-S. Wu, S-Y. Huan, Q-A. Wang, G-L. Shen, and R-Q. Yu: A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: Enhancing sensitivity through a nanowire array strategy. Biosens. Bioelectron. 25, 218 (2009).
M. Jamal, M. Hasan, A. Mathewson, and K.M. Razeeb: Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate. Biosens. Bioelectron. 40, 213 (2013).
M. Jamal, M. Hasan, M. Schmidt, N. Petkov, A. Mathewson, and K.M. Razeeb: Shell@core coaxial NiO@Ni nanowire arrays as high performance enzymeless glucose sensor. J. Electrochem. Soc. 160, B207 (2013).
R.K. Shervedani, M. Karevan, and A. Amini: Prickly nickel nanowires grown on Cu substrate as a supersensitive enzyme-free electrochemical glucose sensor. Sens. Actuators, B 204, 783 (2014).
Y. Zhang, L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia, D. Huo, C. Hou, and Y. Lei: Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 31, 426 (2012).
Z.D. Gao, J. Guo, N.K. Shrestha, R. Hahn, Y.Y. Song, and P. Schmuki: Nickel hydroxide nanoparticle activated semi-metallic TiO2 nanotube arrays for non-enzymatic glucose sensing. Chem.–Eur. J. 19, 15530 (2013).
K. Huo, Y. Li, R. Chen, B. Gao, C. Peng, W. Zhang, L. Hu, X. Zhang, and P.K. Chu: Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2 nanotube arrays. ChemPlusChem 80, 576 (2015).
C. Wang, L. Yin, L. Zhang, and R. Gao: Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J. Phys. Chem. C 114, 4408 (2010).
R. Ding, J. Liu, J. Jiang, J. Zhu, and X. Huang: Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Anal. Methods 4, 4003 (2012).
M. Long, L. Tan, H. Liu, Z. He, and A. Tang: Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosens. Bioelectron. 59, 243 (2014).
S. Yu, X. Peng, G. Cao, M. Zhou, L. Qiao, J. Yao, and H. He: Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim. Acta 76, 512 (2012).
J. Huang, Y. Zhu, X. Yang, W. Chen, Y. Zhou, and C. Li: Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: In situ engineered versus ex situ piled. Nanoscale 7, 559 (2015).
J. Wang, W. Bao, and L. Zhang: A nonenzymatic glucose sensing platform based on Ni nanowire modified electrode. Anal. Methods 4, 4009 (2012).
X. Cao and N. Wang: A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136, 4241 (2011).
Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M. Choi: An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133, 126 (2008).
E.A. Mazzio and K.F. Soliman: Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine. J. Appl. Toxicol. 24, 99 (2004).
Y. Komazaki, T. Inoue, and S. Tanaka: Automated measurement system for H2O2 in the atmosphere by diffusion scrubber sampling and HPLC analysis of Ti(IV)–PAR–H2O2 complex. Analyst 126, 587 (2001).
X. Shu, Y. Chen, H. Yuan, S. Gao, and D. Xiao: H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Anal. Chem. 79, 3695 (2007).
F. Wang, X. Liu, C-H. Lu, and I. Willner: Cysteine-mediated aggregation of Au nanoparticles: The development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 7, 7278 (2013).
W.H. Hsiao, H.Y. Chen, T.M. Cheng, T.K. Huang, Y.L. Chen, C.Y. Lee, and H.T. Chi: Urchin-like Ag nanowires as non-enzymatic hydrogen peroxide sensor. J. Chin. Chem. Soc. 59, 500 (2012).
E. Kurowska, A. Brzózka, M. Jarosz, G. Sulka, and M. Jaskuła: Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim. Acta 104, 439 (2013).
Y. Li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang: Nanospherical surface-supported seeded growth of Au nanowires: Investigation on a new growth mechanism and high-performance hydrogen peroxide sensors. Part. Part. Syst. Charact. 32, 498 (2015).
M. Jamal, M. Hasan, A. Mathewson, and K.M. Razeeb: Non-enzymatic and highly sensitive H2O2 sensor based on Pd nanoparticle modified gold nanowire array electrode. J. Electrochem. Soc. 159, B825 (2012).
J. Huang, Y. Zhu, H. Zhong, X. Yang, and C. Li: Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl. Mater. Interfaces 6, 7055 (2014).
J. Xu, F. Shang, J.H. Luong, K.M. Razeeb, and J.D. Glennon: Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens. Bioelectron. 25, 1313 (2010).
W. Bai, J. Zheng, and Q. Sheng: A non-enzymatic hydrogen peroxide sensor based on Ag/MnOOH nanocomposites. Electroanalysis 25, 2305 (2013).
F. Meng, X. Yan, J. Liu, J. Gu, and Z. Zou: Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 56, 4657 (2011).
L. Wang, M. Deng, G. Ding, S. Chen, and F. Xu: Manganese dioxide based ternary nanocomposite for catalytic reduction and nonenzymatic sensing of hydrogen peroxide. Electrochim. Acta 114, 416 (2013).
S. Su, X. Wei, Y. Guo, Y. Zhong, Y. Su, Q. Huang, C. Fan, and Y. He: A silicon nanowire-based electrochemical sensor with high sensitivity and electrocatalytic activity. Part. Part. Syst. Charact. 30, 326 (2013).
X. Pang, D. He, S. Luo, and Q. Cai: An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens. Actuators, B 137, 134 (2009).
Q. Kang, L. Yang, and Q. Cai: An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74, 62 (2008).
B.X. Gu, C.X. Xu, G.P. Zhu, S.Q. Liu, L.Y. Chen, M.L. Wang, and J.J. Zhu: Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing. J. Phys. Chem. B 113, 6553 (2009).
A.K.M. Kafi, G. Wu, and A. Chen: A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 24, 566 (2008).
L. Li, J. Huang, T. Wang, H. Zhang, Y. Liu, and J. Li: An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. Biosens. Bioelectron. 25, 2436 (2010).
H.W. Pickering and P.R. Swann: Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking. Corrosion 19, 373 (1963).
H.W. Pickering and C. Wagner: Electrolytic dissolution of binary alloys containing a noble metal. J. Electrochem. Soc. 698, 114 (1967).
A.J. Forty: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597 (1979).
A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, and M. Bäumer: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319 (2010).
K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, and J. Erlebacher: The dealloying critical potential. J. Electrochem. Soc. 149, B370 (2002).
J. Snyder, K. Livi, and J. Erlebacher: Dealloying silver/gold alloys in neutral silver nitrate solution: Porosity evolution, surface composition, and surface oxides. J. Electrochem. Soc. 155, C464 (2008).
J. Erlebacher: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).
J. Snyder and J. Erlebacher: Kinetics of crystal etching limited by terrace dissolution. J. Electrochem. Soc. 157, C125 (2010).
T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).
J. Snyder, P. Asanithi, A.B. Dalton, and J. Erlebacher: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883 (2008).
M. Hakamada and M. Mabuchi: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).
R. Morrish, K. Dorame, and A.J. Muscat: Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scr. Mater. 64, 856 (2011).
L.H. Qian and M.W. Chen: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105 (2007).
Y. Ding, Y.J. Kim, and J. Erlebacher: Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).
J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, and F.F. Abraham: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).
E. Detsi, S. Punzhin, J. Rao, P.R. Onck, and J.T.M. De Hosson: Enhanced strain in functional nanoporous gold with a dual microscopic length scale structure. ACS Nano 6, 3734 (2012).
H. Oppermann and L. Dietrich: Nanoporous gold bumps for low temperature bonding. Microelectron. Reliab. 52, 356 (2012).
V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza, and M. Bäumer: Gold catalysts: Nanoporous gold foams. Angew. Chem., Int. Ed. 45, 8241 (2006).
G. Pattrick, E. van der Lingen, C.W. Corti, R.J. Holliday, and D.T. Thompson: The potential for use of gold in automotive pollution control technologies: A short review. Top. Catal. 30–31, 273 (2004).
T.V. Choudhary and D.W. Goodman: Catalytically active gold: The role of cluster morphology. Appl. Catal., A 291, 32 (2005).
G.J. Hutchings: Vapour phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal catalysts. J. Catal. 96, 292 (1985).
M. Haruta, T. Kobayashi, H. Sano, and N. Yamada: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405 (1987).
C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, and Y. Ding: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42 (2007).
R. Zeis, T. Lei, K. Sieradzki, J. Snyder, and J. Erlebacher: Low temperature CO oxidation over unsupported nanoporous gold. J. Catal. 253, 132 (2008).
J. Zhang, P. Liu, H. Ma, and Y. Ding: Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 111, 10382 (2007).
Y. Deng, W. Huang, X. Chen, and Z. Li: Facile fabrication of nanoporous gold film electrodes. Electrochem. Commun. 10, 810 (2008).
L.C. Nagle and J.F. Rohan: Nanoporous gold catalyst for direct ammonia borane fuel cells. J. Electrochem. Soc. 158, B772 (2011).
L.C. Nagle and J.F. Rohan: Nanoporous gold anode catalyst for direct borohydride fuel cell. Int. J. Hydrogen Energy 36, 10319 (2011).
X. Yan, F. Meng, S. Cui, J. Liu, J. Gu, and Z. Zou: Effective and rapid electrochemical detection of hydrazine by nanoporous gold. J. Electroanal. Chem. 44, 661 (2011).
B.K. Jena and C.R. Raj: Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine. J. Phys. Chem. C 111, 6228 (2007).
F. Meng, X. Yan, J. Liu, J. Gu, and Z. Zou: Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 56, 4657 (2011).
K. Twomey, L.C. Nagle, A. Said, F. Barry, and V.I. Ogurtsov: Characterisation of nanoporous gold for use in a dissolved oxygen sensing application. BioNanoScience 5, 55 (2015).
N.A. Mohd Said, V.I. Ogurtsov, K. Twomey, L.C. Nagle, and G. Herzog: Chemically modified electrodes for recessed microelectrode array. Procedia Chem. 20, 12 (2016).
C.A.R. Chapman, H. Chen, M. Stamou, J. Biener, M.M. Biener, P.J. Lein, and E. Seker: Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size. ACS Appl. Mater. Interfaces 7, 7093 (2015).
D.V. Pugh, A. Dursun, and S.G. Corcoran: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75 Pt0.25. J. Mater. Res. 18, 216 (2003).
L-Y. Chen, J-S. Yu, T. Fujita, and M-W. Chen: Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 19, 1221 (2009).
M. Hakamada, J. Motomura, F. Hirashima, and M. Mabuchi: Preparation of nanoporous ruthenium catalyst and its CO oxidation characteristics. Mater. Trans. 53, 524 (2012).
Q. Chen and K. Sieradzki: Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12, 1102 (2013).
P. Vazquez, G. Herzog, C. O’Mahony, J. O’Brien, J. Scully, A. Blake, C. O’Mathuna, and P. Galvin: Microscopic gel–liquid interfaces supported by hollow microneedle array for voltammetric drug detection. Sens. Actuators, B 201, 572 (2014).
ACKNOWLEDGMENTS
The authors would like to acknowledge financial support from Science Foundation Ireland, Enterprise Ireland, European Commission FP6, FP7 and H2020 Programmes.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Galvin, P., Padmanathan, N., Razeeb, K.M. et al. Nanoenabling electrochemical sensors for life sciences applications. Journal of Materials Research 32, 2883–2904 (2017). https://doi.org/10.1557/jmr.2017.290
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2017.290