[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Comparative study of distance-based graph invariants

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The investigation on relationships between various graph invariants has received much attention over the past few decades, and some of these research are associated with Graffiti conjectures (Fajtlowicz and Waller in Congr Numer 60:187–197, 1987) or AutoGraphiX conjectures (Aouchiche et al. in: Liberti, Maculan (eds) Global optimization: from theory to implementation, Springer, New York, 2006). The reciprocal degree distance (RDD), the adjacent eccentric distance sum (AEDS), the average distance (AD) and the connective eccentricity index (CEI) are all distance-based graph invariants or topological indices, some of which found applications in Chemistry. In this paper, we investigate the relationship between RDD and other three graph invariants AEDS, CEI and AD. First, we prove that AEDS > RDD for any tree with at least three vertices. Then, we prove that RDD > CEI for all connected graphs with at least three vertices. Moreover, we prove that RDD > AD for all connected graphs with at least three vertices. As a consequence, we prove that AEDS > CEI and AEDS > AD for any tree with at least three vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, Y., Klavžar, S.: Complexity of topological indices: the case of connective eccentric index. MATCH Commun. Math. Comput. Chem. 76, 659–667 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Aouchiche, M., Bonnefoy, J.M., Fidahoussen, A., Caporossi, G., Hansen, P., Hiesse, L., Lachere, J., Monhait, A.: Variable neighborhood search for extremal graphs. 14. The autoGraphiX 2 system. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 281–310. Springer, New York (2006)

    Chapter  Google Scholar 

  3. Aouchiche, M., Hansen, P.: Proximity and remoteness in graphs: results and conjectures. Networks 58, 95–102 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bartlett, M., Krop, E., Magnant, C., Mutiso, F., Wang, H.: Variations of distance-based invariants of trees. J. Comb. Math. Comb. Comput. 91, 19–29 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Bielak, H., Wolska, K.: On the adjacent eccentric distance sum of graphs. Ann. UMCS Math. 68, 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan London and Elsevier, New York (1976)

    Book  Google Scholar 

  7. Chen, X., Lian, H.: Solution to a problem on the complexity of connective eccentric index of graphs. MATCH Commun. Math. Comput. Chem. 82, 133–138 (2019)

    Google Scholar 

  8. Dankelmann, P.: Average distance and the domination number. Discrete Appl. Math. 80, 21–35 (1997)

    Article  MathSciNet  Google Scholar 

  9. Dankelmann, P., Entringer, R.: Average distance, minimum degree, and spanning trees. J. Graph Theory 33, 1–13 (2000)

    Article  MathSciNet  Google Scholar 

  10. Das, K.C., Nadjafi-Arani, M.J.: Comparison between the Szeged index and the eccentric connectivity index. Discrete Appl. Math. 186, 74–86 (2015)

    Article  MathSciNet  Google Scholar 

  11. Das, K.C., Gutman, I., Nadjafi-Arani, M.J.: Relations between distance-based and degree-based topological indices. Appl. Math. Comput. 270, 142–147 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Das, K.C.: Comparison between Zagreb eccentricity indices and the eccentric connectivity index, the second geometric-arithmetic index and the Graovac–Ghorbani index. Croat. Chem. Acta 89, 505–510 (2016)

    Article  Google Scholar 

  13. Das, K.C., Dehmer, M.: Comparison between the zeroth-order Randić index and the sum-connectivity index. Appl. Math. Comput. 274, 585–589 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Dobrynin, A., Entringer, R., Gutman, I.: Wiener index of trees: theory and applications. Acta Appl. Math. 66, 211–249 (2001)

    Article  MathSciNet  Google Scholar 

  15. Fajtlowicz, S., Waller, W.A.: On two conjectures of GRAFFITI II. Congr. Numer. 60, 187–197 (1987)

    MATH  Google Scholar 

  16. Gao, X.L., Xu, S.J.: Average distance, connected hub number and connected domination number. MATCH Commun. Math. Comput. Chem. 82, 57–75 (2019)

    Google Scholar 

  17. Ghalavand, A., Ashrafi, A.R.: Some inequalities between degree- and distance-based topological indices of graphs. MATCH Commun. Math. Comput. Chem. 79, 399–406 (2018)

    MathSciNet  Google Scholar 

  18. Gupta, S., Singh, M., Madan, A.K.: Connective eccentricity index: a novel topological descriptor for predicting biological activity. J. Mol. Graph. Model. 18, 18–25 (2000)

    Article  Google Scholar 

  19. Hua, H., Zhang, S.: On the reciprocal degree distance of graphs. Discrete Appl. Math. 160, 1152–1163 (2012)

    Article  MathSciNet  Google Scholar 

  20. Hua, H., Gutman, I., Wang, H., Das, K.C.: Relationships between some distance-based topological indices. Filomat 32, 5809–5815 (2018)

    Article  MathSciNet  Google Scholar 

  21. Hua, H., Wang, H., Gutman, I.: Comparing eccentricity-based graph invariants. Discuss. Math. Graph Theory (2018). https://doi.org/10.7151/dmgt.2171

    Article  MATH  Google Scholar 

  22. Imran, N., Shaker, H.: Inequalities between degree- and distance-based graph invariants. J. Inequal. Appl. R39, 1–15 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Ivanciuc, O., Balaban, T.S., Balaban, A.T.: Reciprocal distance matrix, related local vertex invariants and topological indices. J. Math. Chem. 12, 309–318 (1993)

    Article  MathSciNet  Google Scholar 

  24. Knor, M., Skrekovski, R., Tepeh, A.: Mathematical aspects of Balaban index. MATCH Commun. Math. Comput. Chem. 79, 685–716 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Li, S., Meng, X.: Four edge-grafting theorems on the reciprocal degree distance of graphs and their applications. J. Comb. Optim. 30, 468–488 (2015)

    Article  MathSciNet  Google Scholar 

  26. Li, S., Zhang, H., Zhang, M.: Further results on the reciprocal degree distance of graphs. J. Comb. Optim. 31, 648–668 (2016)

    Article  MathSciNet  Google Scholar 

  27. Liu, M., Das, K.C.: On the ordering of distance-based invariants of graphs. Appl. Math. Comput. 324, 191–201 (2018)

    Article  MathSciNet  Google Scholar 

  28. Plavšć, D., Nikolić, S., Trinajstić, N., Mihalić, Z.: On the Harary index for the characterization of chemical graphs. J. Math. Chem. 12, 235–250 (1993)

    Article  MathSciNet  Google Scholar 

  29. Pourfaraj, L., Ghorbani, M.: Remarks on the reciprocal degree distance. Stud. Univ. Babes-Bolyai Chem. 59, 29–34 (2014)

    Google Scholar 

  30. Qu, H., Cao, S.: On the adjacent eccentric distance sum index of graphs. PloS One 10, e0129497 (2015)

    Article  Google Scholar 

  31. Sardana, S., Madan, A.K.: Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor. J. Mol. Model. 8, 258–265 (2002)

    Article  Google Scholar 

  32. Sardana, S., Madan, A.K.: Relationship of Wiener’s index and adjacent eccentric distance sum index with nitroxide free radicals and their precursors as modifiers against oxidative damage. J. Mol. Struct. (Theochem) 624, 53–59 (2003)

    Article  Google Scholar 

  33. Stevanovic, S., Stevanovic, D.: On distance-based topological indices used in architectural research. MATCH Commun. Math. Comput. Chem. 79, 659–683 (2018)

    MathSciNet  Google Scholar 

  34. Su, G., Xiong, L., Su, X., Chen, X.: Some results on the reciprocal sum-degree distance of graphs. J. Comb. Optim. 30, 435–446 (2015)

    Article  MathSciNet  Google Scholar 

  35. Wiener, H.: Structural determination of paraffin boiling point. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  36. Yu, G., Feng, L.: On the connective eccentricity index of graphs. MATCH Commun. Math. Comput. Chem. 69, 611–628 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Yu, G., Qu, H., Tang, L., Feng, L.: On the connective eccentricity index of trees and unicyclic graphs with given diameter. J. Math. Anal. Appl. 420, 1776–1786 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China under Grant Nos. 11971011 and 11571135. The second author was supported by National Natural Science Foundation of China under Grant Nos. 11971011,11571135 and Qing Lan Project of Jiangsu Province, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hua, H. & Wang, M. Comparative study of distance-based graph invariants. J. Appl. Math. Comput. 64, 457–469 (2020). https://doi.org/10.1007/s12190-020-01363-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01363-2

Keywords

Mathematics Subject Classification

Navigation