Abstract
Chitin is a polysaccharide found in abundance in the shell of crustaceans. In this study, the protease from Bacillus cereus SV1 was applied for chitin extraction from shrimp waste material of Metapenaeus monoceros. A high level of deproteinization 88.8% ± 0.4 was recorded with an E/S ratio of 20. The demineralization was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01%. 13C CP/MAS-NMR spectral analysis of chitin prepared by the enzymatic deproteinization of shrimp wastes was found to be similar to that obtained by alkaline treatment and to the commercial α-chitin. The degree of N-acetylation, calculated from the spectrum, was 89.5%. Chitin obtained by treatment with crude protease from B. cereus was converted to chitosan by N-deacetylation, and the antibacterial activity of chitosan solution against different bacteria was investigated. Results showed that chitosan solution at 50 mg/mL markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested. Furthermore, the antioxidant potential of the protein hydrolysates obtained during enzymatic isolation of chitin was evaluated using various in vitro assays. All the samples exerted remarkable antioxidant activities. These results suggest that enzymatic deproteinization of the shrimp shell wastes, using B. cereus SV1 protease, could be applicable to the chitin production process.
Similar content being viewed by others
References
Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Bioresource Technology, 99, 1359–1367.
Rinaudo, M. (2006). Progress in Polymer Science, 31, 603–632.
Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2006). Carbohydrate Polymers, 64, 98–103.
Knorr, D. (1991). Food Technology, 45, 114–122.
Yen, M. T. & Mau, J. L. (2006). Fungal Science, 21, 1–11.
Yen, M. T., Yang, J. H., & Mau, J. L. Carbohydrate Polymers, 75, 15–21.
Oh, K. T., Kima, Y. J., Nguyen, V. N., Jung, W. J., & Park, R. D. (2007). Process Biochemistry, 42, 1069–1074.
Bhaskar, N., Suresh, P. V., Sakhare, P. Z., & Sachindra, N. M. (2007). Enzyme and Microbial Technology, 40, 1427–1434.
Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Carbohydrate Research, 342, 2423–2429.
Synowiecki, J. & Al-Khateeb, N. A. A. Q. (2008). Food Chemistry, 68, 147–152.
Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., & Park, R. D. (2008). Carbohydrate Polymers, 74, 504–508.
Roberts, G. A. F. (1992). In G. A. E. Roberts (Ed.), Chitin chemistry (pp. 85–91). London: Macmillan.
Madihally, S. V., & Matthew, H. W. T. (1999). Biomaterials, 20, 1133–1142.
Li, B., Wang, X., Chen, R., Huangfu, W., & Xie, G. (2008). Carbohydrate Polymers, 72, 287–292.
Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., et al. (2008). Biotechnology Advances, 26, 1–21.
Chevrier, A., Hoemann, C. D., Sun, J., & Buschmann, M. D. (2007). Osteoarthritis and Cartilage, 15, 316–327.
Li, L., & Hsieh, Y. L. (2006). Carbohydrate Research, 341, 374–381.
Kanatt, S. R., Chander, R., & Sharma, A. (2008). Food Chemistry, 107, 845–852.
Harish Prashanth, K. V., & Tharanathan, R. N. (2007). Trends in Food Science and Technology, 18, 117–131.
Fujimoto, T., Tsuchiya, Y., Terao, M., Nakamura, K., & Yamamoto, M. (2006). International Journal of Food Microbiology, 112, 96–101.
Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., et al. (2006). Carbohydrate Polymers, 64, 60–65.
Du, Y., Zhao, Y., Dai, S., & Yang, B. (2009). Innovative Food Science and Emerging Technologies, 10, 103–107.
Yun, Y. S., Kim, K. S., & Lee, Y. N. (1999). Journal of Chitin and Chitosan, 4, 8–14.
Park, P. J., Je, J. Y., Byun, H. G., Moon, S. H., & Kim, S. K. (2004). Journal of Microbiology and Biotechnology, 14, 317–323.
Park, P. J., Kim, S. K., & Lee, H. K. (2002). Journal of Chitin and Chitosan, 7, 225–230.
Chung, Y. C., Su, Y. P., Chen, C. C., Jia, G., Wang, H. L., Wu, J. C. G., et al. (2004). Acta Pharmacologica Sinica, 27, 932–936.
Gerasimenko, D. V., Avdienko, I. D., Bannikova, G. E., Zueva, O. Y., & Varlamov, V. P. (2004). Applied Biochemistry and Microbiology, 40, 253–257.
Park, P. J., Lee, H. K., & Kim, S. K. (2004). Journal of Microbiology and Biotechnology, 14, 41–47.
Jellouli, K., Bayoudh, A., Manni, L., Agrebi, R., & Nasri, M. (2008). Applied Microbiology and Biotechnology, 79, 989–999.
Manni, L., Jellouli, K., Agrebi, R., Bayoudh, A., & Nasri, M. (2008). Process Biochemistry, 43, 522–530.
Kembhavi, A. A., Kulkarni, A., & Pant, A. A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.
AOAC. (1995). Official methods of analysis (16th ed.). Washington: Association of Official Analytic Chemist.
Rao, M. S., Munoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.
Ottøy, M. H., Varum, K. M., & Smidsrød, O. (1996). Carbohydrate Polymers, 19, 17–24.
Bersuder, P., Hole, M., & Smith, G. (1998). Journal of the American Oil Chemists' Society, 75, 181–187.
Yildirim, A., Mavi, A., & Kara, A. A. (2001). Journal of Agricultural and Food Chemistry, 49, 4083–4089.
Koleva, I. I., Van Beek, T. A., Linssen, J. P. H., De Groot, A., & Evstatieva, L. N. (2002). Phytochemistry Analysis, 13, 8–17.
Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Bioresource Technology, 100, 3366–3373.
Fakhfakh, N., Hmidet, N., Haddar, A., & Nasri, M. (2009). Applied Biochemistry and Biotechnology, (In press)
Berghe, D. V. A., & Vlietinck, A. J. (1991). Screening methods for antibacterial and antiviral agents from higher plants. Methods in Plant Biochemistry vol. 6, Academic Press, London, pp. 47–69.
Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A. et al. (2009). Applied Biochemistry and Biotechnology, (In press) (doi: 10.1007/s12010-009-8703-z).
Tolaimate, A., Desbrieres, J., Rhazi, M., & Alagui, A. (2003). Polymer, 44, 7939–7952.
Percot, A., Viton, C., & Domard, A. (2003). Biomacromolecules, 4, 12–18.
Chandumpai, A., Singhpibulporn, N., Faroongsarng, D., & Sornprasit, P. (2004). Carbohydrate Polymers, 58, 467–474.
Canizares, E., Gonzalez José, A., Hau, L., & Osorno, H. (2002). Alimentaria, 331, 31–34.
Fanimo, A. O., Oduguwa, O. O., Onifade, A. O., & Olutunde, T. O. (2000). Bioresource Technology, 72, 185–188.
Rødde, R. H., Einbu, A., & Varum, K. M. (2008). Carbohydrate Polymers, 71, 388–393.
Cardenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Journal of Applied Polymer Science, 93, 1876–1885.
Focher, B., Beltrame, P. L., Naggi, A., & Torri, G. (1990). Carbohydrate Polymers, 12, 405–418.
Cortizo, M. S., Berghoff, C. F., & Alessandrini, J. L. (2008). Carbohydrate Polymers, 74, 10–15.
Heux, L., Brugnerotto, J., Desbrières, J., Versali, M. F., & Rinaudo, M. (2000). Biomacromolecules, 1, 746–751.
Lavall, R. L., Assis, O. B. G., & Campana-Filho, S. P. (2007). Bioresource Technology, 98, 2465–2472.
Chung, Y. C. & Chen, C. Y. (2008). Bioresource Technology, 99, 2806–2814.
Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). International Journal of Food Microbiology, 71, 235–244.
Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Food Microbiology, 21, 703–714.
No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). International Journal of Food Microbiology, 74, 65–72.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2008). Food Chemistry, 114, 1198–1205.
Binsan, W., Benjakul, S., Visessanguan, W., Roytrakul, S., Tanaka, M., & Kishimura, H. (2008). Food Chemistry, 106, 185–193.
Sarkar, A., Bishayee, A., & Chatterjee, M. (1995). Cancer Biochemistry Biophysics, 15, 111–125.
Kumazawa, S., Taniguchi, M., Suzuki, Y., Shimura, M., Kwon, M. S., & Nakayama, T. (2002). Journal of Agricultural and Food Chemistry, 50, 373–377.
Acknowledgements
This work was supported by grants from Ministry of Higher Education, Scientific Research and Technology-Tunisia. The authors express their thanks to Hajji Rachid (Laboratoire de Chimie Industrielle II, Ecole Nationale d'Ingénieurs de Sfax) for the solid-state NMR analysis. The authors would like to thank Mr. Hajji Ayedi from the Faculty of Letters and Human Sciences of Kairouan for his help with English.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Manni, L., Ghorbel-Bellaaj, O., Jellouli, K. et al. Extraction and Characterization of Chitin, Chitosan, and Protein Hydrolysates Prepared from Shrimp Waste by Treatment with Crude Protease from Bacillus cereus SV1. Appl Biochem Biotechnol 162, 345–357 (2010). https://doi.org/10.1007/s12010-009-8846-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-009-8846-y