Abstract
The current increase in amount of shrimp wastes produced by the shrimp industry has led to the need in finding new methods for shrimp wastes disposal. In this study, an extracellular organic solvent- and oxidant-stable metalloprotease was produced by Bacillus cereus SV1. Maximum protease activity (5,900 U/mL) was obtained when the strain was grown in medium containing 40 g/L shrimp wastes powder as a sole carbon source. The optimum pH, optimum temperature, pH stability, and thermal stability of the crude enzyme preparation were pH 8.0, 60 °C, pH 6–9.5, and <55 °C, respectively. The crude protease was extremely stable toward several organic solvents. No loss of activity was observed even after 60 days of incubation at 30 °C in the presence of 50% (v/v) dimethyl sulfoxide and ethyl ether; the enzyme retained more than 70% of its original activity in the presence of ethanol and N,N-dimethylformamide. The protease showed high stability toward anionic (SDS) and non-ionic (Tween 80, Tween 20, and Triton X-100) surfactants. Interestingly, the activity of the enzyme was significantly enhanced by oxidizing agents. In addition, the enzyme showed excellent compatibility with some commercial liquid detergents. The protease of B. cereus SV1, produced under the optimal culture conditions, was tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio E/S of 20 was about 88%. The novelties of the SV1 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.
Similar content being viewed by others
References
Shahidi, F., & Synowiecki, J. (1991). Journal of Agricultural and Food Chemistry, 39, 1527–1532.
Bhaskar, N., Suresh, P. V., Sakhare, P. Z., & Sachindra, N. M. (2007). Enz Microbial Technol., 40, 1427–1434.
Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Carbohydrate Research, 342, 2423–2429.
Du, Y., Zhao, Y., Dai, S., & Yang, B. (2009). Innov Food Sci. Emerging Technol., 10, 103–107.
Rinaudo, M. (2006). Progress in Polymer Science, 31, 603–632.
Roberts, G. A. F. (1992). Chitin chemistry. London: Macmillan.
Chaussard, G., & Domard, A. (2004). Biomacromolecules, 5, 559–564.
Bustos, R. O. and Healy, M. G. (1994). Microbial deproteinization of waste prawn shell. Institution of Chemical Engineers Symposium Series, Institution of Chemical Engineers, England: Rugby pp. 13–15.
Oh, K. T., Kim, Y. J., Nguyen, V. N., Jung, W. J., & Park, R. D. (2007). Process Biochemistry, 42, 1069–1074.
Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., & Park, R. D. (2008). Carbohydrate Polymers, 74, 504–508.
Oh, Y. S., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enz Microbial Technol., 27, 3–10.
Wang, S. L., Hsu, W. T., Liang, T. W., Yen, Y. H., & Wang, C. L. (2008). Bioresource Technology, 99, 5679–5686.
Wang, S. L., Chen, H. J., Liang, T. W., & Lin, Y. D. (2009). Process Biochemistry, 44, 70–76.
Wang, S. L., Kao, T. Y., Wang, C. L., Yen, Y. H., Chern, M. K., & Chen, Y. H. (2006). Enz Microbial Technol., 39, 724–731.
Wang, S. L., Yang, C. H., Liang, T. W., & Yen, Y. H. (2008). Bioresource Technology, 99, 3700–3707.
Wang, S. L., Chen, S. J., & Wang, C. L. (2008). Carbohydrate Research, 7, 1171–1179.
Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.
Ogino, H., & Ishikawa, H. J. (2001). Biosci. Bioeng., 91, 109–116.
Manni, L., Jellouli, K., Agrebi, R., Bayoudh, A., & Nasri, M. (2008). Process Biochemistry, 43, 522–530.
Miller, J. H. (1972). Experiments in molecular genetics (pp. 431–435). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
AOAC (1995). Official methods of analysis. Arlington, VA. Secs. 930.15–942.05.
Kembhavi, A. A., Kulkarni, A., & Pant, A. A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.
Rao, M. S., Muñoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.
Synowiecki, J., & Al-Khateeb, N. A. A. Q. (2000). Food Chemistry, 68, 147–152.
Percot, A., Viton, C., & Domard, A. (2003). Biomacromolecules, 4, 12–18.
Wang, S. L., & Yeh, P. Y. (2006). Process Biochemistry, 41, 1545–1552.
Legarreta, G. I., Zakaria, Z., Hall, G. M. (1996). In advances in Chitin Science; Jacques Andre: Lyon, France, vol. 1, pp. 399–402
Cortizo, M. S., Berghoff, C. F., & Alessandrini, J. L. (2008). Carbohydrate Polymers, 74, 10–15.
Sookkheo, B., Sinchaikul, S., Phutrakul, S., & Chen, S. T. (2000). Protein Expression and Purification, 20, 142–151.
Yang, J. K., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enz Microbial Technol., 26, 406–413.
Ghorbel-Frikha, B., Sellami-Kamoun, A., Fakhfakh, N., Haddar, A., Manni, L., & Nasri, M. (2005). Journal of Industrial Microbiology & Biotechnology, 32, 186–194.
Haddar, A., Bougatef, A., Agrebi, R., Sellami-Kamoun, A., & Nasri, M. (2008). Process Biochemistry, 44, 29–35.
Oberoi, R., Beg, Q. K., Puri, S., Saxena, R. K., & Gupta, R. (2001). World Journal of Microbiology & Biotechnology, 17, 493–497.
Sellami-Kamoun, A., Haddar, A., El-Hadj Ali, N., Ghorbel-Frikha, B., Kanoun, S., & Nasri, M. (2008). Microbiological Research, 163, 299–306.
Doddapaneni, K. K., Tatineni, R., Vellanki, R. N., Rachcha, S., Anabrolu, N., Narakuti, V., et al. (2007). Microbiological Research, . doi:10.1016/j.micres.2007.04.005.
Gupta, M. N. (1992). European Journal of Biochemistry, 203, 25–32.
Fang, Y., Liu, S., Wang, S., & Lv, M. (2009). Biochemical Engineering Journal, 43, 212–215.
Jung, W. J., Jo, G. H., Kuk, J. H., Kim, Y. J., Oh, K. T., & Park, R. D. (2007). Carbohydrate Polymers, 68, 746–750.
Acknowledgments
This work was funded by the “Ministry of Higher Education, Scientific Research and Technology-Tunisia”. The authors would like to thank M. Ayadi HAJJI from the Faculty of Letters and Human Sciences of Kairouan for his help with English.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Manni, L., Jellouli, K., Ghorbel-Bellaaj, O. et al. An Oxidant- and Solvent-Stable Protease Produced by Bacillus cereus SV1: Application in the Deproteinization of Shrimp Wastes and as a Laundry Detergent Additive. Appl Biochem Biotechnol 160, 2308–2321 (2010). https://doi.org/10.1007/s12010-009-8703-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-009-8703-z