[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Oxidant- and Solvent-Stable Protease Produced by Bacillus cereus SV1: Application in the Deproteinization of Shrimp Wastes and as a Laundry Detergent Additive

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The current increase in amount of shrimp wastes produced by the shrimp industry has led to the need in finding new methods for shrimp wastes disposal. In this study, an extracellular organic solvent- and oxidant-stable metalloprotease was produced by Bacillus cereus SV1. Maximum protease activity (5,900 U/mL) was obtained when the strain was grown in medium containing 40 g/L shrimp wastes powder as a sole carbon source. The optimum pH, optimum temperature, pH stability, and thermal stability of the crude enzyme preparation were pH 8.0, 60 °C, pH 6–9.5, and <55 °C, respectively. The crude protease was extremely stable toward several organic solvents. No loss of activity was observed even after 60 days of incubation at 30 °C in the presence of 50% (v/v) dimethyl sulfoxide and ethyl ether; the enzyme retained more than 70% of its original activity in the presence of ethanol and N,N-dimethylformamide. The protease showed high stability toward anionic (SDS) and non-ionic (Tween 80, Tween 20, and Triton X-100) surfactants. Interestingly, the activity of the enzyme was significantly enhanced by oxidizing agents. In addition, the enzyme showed excellent compatibility with some commercial liquid detergents. The protease of B. cereus SV1, produced under the optimal culture conditions, was tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio E/S of 20 was about 88%. The novelties of the SV1 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shahidi, F., & Synowiecki, J. (1991). Journal of Agricultural and Food Chemistry, 39, 1527–1532.

    Article  CAS  Google Scholar 

  2. Bhaskar, N., Suresh, P. V., Sakhare, P. Z., & Sachindra, N. M. (2007). Enz Microbial Technol., 40, 1427–1434.

    Article  CAS  Google Scholar 

  3. Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Carbohydrate Research, 342, 2423–2429.

    Article  CAS  Google Scholar 

  4. Du, Y., Zhao, Y., Dai, S., & Yang, B. (2009). Innov Food Sci. Emerging Technol., 10, 103–107.

    Article  CAS  Google Scholar 

  5. Rinaudo, M. (2006). Progress in Polymer Science, 31, 603–632.

    Article  CAS  Google Scholar 

  6. Roberts, G. A. F. (1992). Chitin chemistry. London: Macmillan.

    Google Scholar 

  7. Chaussard, G., & Domard, A. (2004). Biomacromolecules, 5, 559–564.

    Article  CAS  Google Scholar 

  8. Bustos, R. O. and Healy, M. G. (1994). Microbial deproteinization of waste prawn shell. Institution of Chemical Engineers Symposium Series, Institution of Chemical Engineers, England: Rugby pp. 13–15.

  9. Oh, K. T., Kim, Y. J., Nguyen, V. N., Jung, W. J., & Park, R. D. (2007). Process Biochemistry, 42, 1069–1074.

    Article  CAS  Google Scholar 

  10. Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., & Park, R. D. (2008). Carbohydrate Polymers, 74, 504–508.

    Article  CAS  Google Scholar 

  11. Oh, Y. S., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enz Microbial Technol., 27, 3–10.

    Article  CAS  Google Scholar 

  12. Wang, S. L., Hsu, W. T., Liang, T. W., Yen, Y. H., & Wang, C. L. (2008). Bioresource Technology, 99, 5679–5686.

    Article  CAS  Google Scholar 

  13. Wang, S. L., Chen, H. J., Liang, T. W., & Lin, Y. D. (2009). Process Biochemistry, 44, 70–76.

    Article  CAS  Google Scholar 

  14. Wang, S. L., Kao, T. Y., Wang, C. L., Yen, Y. H., Chern, M. K., & Chen, Y. H. (2006). Enz Microbial Technol., 39, 724–731.

    Article  CAS  Google Scholar 

  15. Wang, S. L., Yang, C. H., Liang, T. W., & Yen, Y. H. (2008). Bioresource Technology, 99, 3700–3707.

    Article  CAS  Google Scholar 

  16. Wang, S. L., Chen, S. J., & Wang, C. L. (2008). Carbohydrate Research, 7, 1171–1179.

    Article  Google Scholar 

  17. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  18. Ogino, H., & Ishikawa, H. J. (2001). Biosci. Bioeng., 91, 109–116.

    Article  CAS  Google Scholar 

  19. Manni, L., Jellouli, K., Agrebi, R., Bayoudh, A., & Nasri, M. (2008). Process Biochemistry, 43, 522–530.

    Article  CAS  Google Scholar 

  20. Miller, J. H. (1972). Experiments in molecular genetics (pp. 431–435). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  21. AOAC (1995). Official methods of analysis. Arlington, VA. Secs. 930.15–942.05.

  22. Kembhavi, A. A., Kulkarni, A., & Pant, A. A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.

    Article  CAS  Google Scholar 

  23. Rao, M. S., Muñoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.

    Article  CAS  Google Scholar 

  24. Synowiecki, J., & Al-Khateeb, N. A. A. Q. (2000). Food Chemistry, 68, 147–152.

    Article  CAS  Google Scholar 

  25. Percot, A., Viton, C., & Domard, A. (2003). Biomacromolecules, 4, 12–18.

    Article  CAS  Google Scholar 

  26. Wang, S. L., & Yeh, P. Y. (2006). Process Biochemistry, 41, 1545–1552.

    Article  CAS  Google Scholar 

  27. Legarreta, G. I., Zakaria, Z., Hall, G. M. (1996). In advances in Chitin Science; Jacques Andre: Lyon, France, vol. 1, pp. 399–402

  28. Cortizo, M. S., Berghoff, C. F., & Alessandrini, J. L. (2008). Carbohydrate Polymers, 74, 10–15.

    Article  Google Scholar 

  29. Sookkheo, B., Sinchaikul, S., Phutrakul, S., & Chen, S. T. (2000). Protein Expression and Purification, 20, 142–151.

    Article  CAS  Google Scholar 

  30. Yang, J. K., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enz Microbial Technol., 26, 406–413.

    Article  CAS  Google Scholar 

  31. Ghorbel-Frikha, B., Sellami-Kamoun, A., Fakhfakh, N., Haddar, A., Manni, L., & Nasri, M. (2005). Journal of Industrial Microbiology & Biotechnology, 32, 186–194.

    Article  CAS  Google Scholar 

  32. Haddar, A., Bougatef, A., Agrebi, R., Sellami-Kamoun, A., & Nasri, M. (2008). Process Biochemistry, 44, 29–35.

    Article  Google Scholar 

  33. Oberoi, R., Beg, Q. K., Puri, S., Saxena, R. K., & Gupta, R. (2001). World Journal of Microbiology & Biotechnology, 17, 493–497.

    Article  CAS  Google Scholar 

  34. Sellami-Kamoun, A., Haddar, A., El-Hadj Ali, N., Ghorbel-Frikha, B., Kanoun, S., & Nasri, M. (2008). Microbiological Research, 163, 299–306.

    Article  CAS  Google Scholar 

  35. Doddapaneni, K. K., Tatineni, R., Vellanki, R. N., Rachcha, S., Anabrolu, N., Narakuti, V., et al. (2007). Microbiological Research, . doi:10.1016/j.micres.2007.04.005.

    Google Scholar 

  36. Gupta, M. N. (1992). European Journal of Biochemistry, 203, 25–32.

    Article  CAS  Google Scholar 

  37. Fang, Y., Liu, S., Wang, S., & Lv, M. (2009). Biochemical Engineering Journal, 43, 212–215.

    Article  CAS  Google Scholar 

  38. Jung, W. J., Jo, G. H., Kuk, J. H., Kim, Y. J., Oh, K. T., & Park, R. D. (2007). Carbohydrate Polymers, 68, 746–750.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the “Ministry of Higher Education, Scientific Research and Technology-Tunisia”. The authors would like to thank M. Ayadi HAJJI from the Faculty of Letters and Human Sciences of Kairouan for his help with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Nasri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manni, L., Jellouli, K., Ghorbel-Bellaaj, O. et al. An Oxidant- and Solvent-Stable Protease Produced by Bacillus cereus SV1: Application in the Deproteinization of Shrimp Wastes and as a Laundry Detergent Additive. Appl Biochem Biotechnol 160, 2308–2321 (2010). https://doi.org/10.1007/s12010-009-8703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8703-z

Keywords

Navigation