Abstract
The present paper addresses a new problem related to measuring the quality of color spotlight images. Its primary aim is to raise the limitation problem of available cameras to reproduce the spotlight colors, especially at night. To address this issue, a new reduced reference quality measure is proposed to measure the spotlight color degradation. The idea focuses on transforming the color information into another space where it is defined as an orientation represented on a unit sphere. Then, the directional statistics-based von Mises–Fisher probability density function is used as a deviation measure. To validate the proposed model, a new collection of widely used spotlight color images is constructed. The collection contains a hundred of spotlight colors captured by different cameras in Sherbrooke city as well as available images on the Web. Obtained results are promising.
Similar content being viewed by others
References
Ziou, D., Kerouh, F.: Estimation of light source colours for light pollution assessment. Environ. Pollut. 236, 844–849 (2018)
Markvica, K., Richter, G., Lenz, G.: Impact of urban street lighting on road users’ perception of public space and mobility behavior. Build. Environ. 154, 32–43 (2019)
Levinson, J., Askeland, J., Dolson, J., Thrun, S.: Traffic light mapping, localization, and state detection for autonomous vehicles. In: IEEE International Conference on Robotics and Automation (2011). https://doi.org/10.1109/ICRA.2011.5979714
Verma, P., Singh, V.B.P.: Traffic light recognition system: a computer vision based approach. Int. J. Sci. Technol. Eng. 3(3), 99–102 (2016)
Allison, R.S., Brandwood, T., James, M.V., Jennings, E.Z., MacudaPaul, T., Stephen, T., Palmisano, A.: Psychophysics of night vision device halos. Vis. Disp. Milit. Secur. Appl. (2010). https://doi.org/10.1007/978-1-4419-1723
Bhatnagar, G., Liu, Z.: A novel image fusion framework for night-vision navigation and surveillance. SIViP 9, 165–175 (2015)
Jiang, B., Meng, H., Ma, X., Wang, L., Zhou, Y., Xu, P., Jiang, S., Meng, X.: Nighttime image dehazing with modified models of color transfer and guided image filter. Multimed. Tools Appl. 77(3), 3125–3141 (2018)
Xie, C.H., Qiao, W.Q., Liu, Z., Ying, W.H.: Single image dehazing using kernel regression model and dark channel prior. SIViP 11(4), 705–712 (2015)
ITU-T. REC. P. 910: Subjective audiovisual quality assessment methods for multimedia applications (2008)
Niu, Y., Zhang, H., Guo, W., Ji, R.: Image quality assessment for color correction based on color contrast similarity and color value difference. IEEE Trans. Circuits Syst. Video Technol. 28(4), 849–862 (2018)
Gu, K., Wang, S., Zhai, G., Ma, S., Yang, X., Zhang, W.: Content-weighted mean-squared error for quality assessment of compressed images. SIViP 10(5), 803–810 (2016)
Gupta, S., Gore, A., Kumar, S., Mani, S., Srivastava, P.K.: Objective color image quality assessment based on Sobel magnitude. SIViP 11(1), 123–128 (2017)
Kerouh, F., Serir, A.: Wavelet-based blind blur reduction. SIViP 9(7), 1587–1599 (2015)
Yang, J., Huang, Z., Sim, K., Lu, W., Liu, K., Liu, H.: No-reference image quality assessment focusing on human facial region. Signal Process. Image Commun. 78, 51–61 (2019)
Rohil, M.K., Gupta, N., Yadav, P.: An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis. Signal Image Video Proces. (2019). https://doi.org/10.1007/s11760-019-01543-z
Kerouh, F., Ziou, D., Serir, A.: Histogram modelling-based no reference blur quality measure. J. Image Commun. image Represent. 60(C), 22–28 (2018)
Ait Abdelouahad, A., El Hassoun, M., Cherifi, H., Aboutajdine, D.: Reduced reference image quality assessment based on statistics in empirical mode decomposition domain. SIViP 8(8), 1663–1680 (2014)
Miao, X., Lee, D., Cheng, X., Yang, X.: Reduced-reference image quality assessment based on improved local binary pattern. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Turek, M., Ramalingam, S., Xu, K., Lin, S., Alsallakh, B., Yang, J., Cuervo, E., Ventura, J. (eds.) Advances in Visual Computing, pp. 382–294. Springer (2018)
Kalatehjari, E., Yaghmaee, F.: A new reduced-reference image quality assessment based on the SVD signal projection. Multimed. Tools Appl. 77, 25053–25076 (2018)
Zhang, H., Li, Y., Li, S., Liu, Y.: Reduced-reference image quality assessment method based on wavelet feature extraction and fusion. IOP Conf. Ser. Mater. Sci. Eng. 569, 1–8 (2019)
Gaurav, S., Dalal, W., Edul, N.: The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Pattern Anal. Appl. 30(1), 21–30 (2005)
Hassan, M., Bhagvati, C.: Structural similarity measure for color images. Int. J. Comput. Appl. 43(14), 7–12 (2012)
Hore, A., Ziou, D.: Is there a relationship between peak-signal-to-noise ratio and structural similarity index measure? IET Image Proc. 7(1), 12–24 (2013)
Yalman, Y., Erturk, I.: A new color image quality measure based on YUV transformation and PSNR for human vision system. Turk. J. Electr. Eng. Comput. Sci. 21, 603–612 (2013)
Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42(1–2), 143–175 (2001)
Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1995)
Arnold, K.J.: On spherical probability distributions. Technical report, Massachusetts Institute of technology (1941)
Dhillon, I.S., Sra, S.: Modeling data using directional distributions. Utcs Technical Report (2003)
Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises–Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)
Gopal, S., Yang, Y.: von Mises–Fisher clustering models. In: Proceedings of the International Conference on Machine Learning, pp. 154–162 (2014)
Amayri, O., Bouguila, N.: Beyond hybrid generative discriminative learning: spherical data classification. Pattern Anal. Appl. 18, 113–133 (2015)
Palacios, A.R., Rodriguez, C., Vejarano, C.: Circulat processing of the hue variable. In: Proceedings of the Second International Conference on Computer Vision Theory and Applications, vol. 1, pp. 69–76 (2007)
Gabarda, S., Cristobal, G.: No-reference image quality assessment through the von Mises distribution. J. Opt. Soc. Am. 29(10), 2058–2066 (2012)
Yang, M.S., Chien, S.J., Hung, W.L.: Learning-based EM clustering for data on the unit hypersphere with application to exoplanet data. Appl. Soft Comput. 60, 101–114 (2017)
Yang, M.S., Chien, S.J., Hung, W.L.: An unsupervised clustering algorithm for data on the unit hypersphere. Appl. Soft Comput. 42, 290–313 (2016)
Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Feature engineering strategies for credit card fraud detection. Expert Syst. Appl. 51, 134-14276-82 (2016)
Diethe, T.R.: A Note on the Kullback–Leibler Divergence for the von Mises–Fisher distribution. arXiv:1502.07104 1–8 (2015)
Bruni, V., Rossi, E., Vitulano, D.: Jensen–Shannon divergence for visual quality assessment. SIViP 7, 411–421 (2013)
Omari, M., Ait Abdelouahad, A., El Hassouni, M., Herifi, H.: Color image quality assessment measure using multivariate generalized Gaussian distribution. arXiv:1412.0111v1 1–8 (2014)
Tomaszewska, A.L.: Scene reduction for subjective image quality assessment. J. Electron. Imaging 25(1), 1–13 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kerouh, F., Ziou, D. & Jiang, Q. Directional statistics-based quality measure for spotlight color images. SIViP 14, 1125–1132 (2020). https://doi.org/10.1007/s11760-020-01653-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-020-01653-z