[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Directional statistics-based quality measure for spotlight color images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The present paper addresses a new problem related to measuring the quality of color spotlight images. Its primary aim is to raise the limitation problem of available cameras to reproduce the spotlight colors, especially at night. To address this issue, a new reduced reference quality measure is proposed to measure the spotlight color degradation. The idea focuses on transforming the color information into another space where it is defined as an orientation represented on a unit sphere. Then, the directional statistics-based von Mises–Fisher probability density function is used as a deviation measure. To validate the proposed model, a new collection of widely used spotlight color images is constructed. The collection contains a hundred of spotlight colors captured by different cameras in Sherbrooke city as well as available images on the Web. Obtained results are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ziou, D., Kerouh, F.: Estimation of light source colours for light pollution assessment. Environ. Pollut. 236, 844–849 (2018)

    Google Scholar 

  2. Markvica, K., Richter, G., Lenz, G.: Impact of urban street lighting on road users’ perception of public space and mobility behavior. Build. Environ. 154, 32–43 (2019)

    Google Scholar 

  3. Levinson, J., Askeland, J., Dolson, J., Thrun, S.: Traffic light mapping, localization, and state detection for autonomous vehicles. In: IEEE International Conference on Robotics and Automation (2011). https://doi.org/10.1109/ICRA.2011.5979714

  4. Verma, P., Singh, V.B.P.: Traffic light recognition system: a computer vision based approach. Int. J. Sci. Technol. Eng. 3(3), 99–102 (2016)

    Google Scholar 

  5. Allison, R.S., Brandwood, T., James, M.V., Jennings, E.Z., MacudaPaul, T., Stephen, T., Palmisano, A.: Psychophysics of night vision device halos. Vis. Disp. Milit. Secur. Appl. (2010). https://doi.org/10.1007/978-1-4419-1723

    Article  Google Scholar 

  6. Bhatnagar, G., Liu, Z.: A novel image fusion framework for night-vision navigation and surveillance. SIViP 9, 165–175 (2015)

    Google Scholar 

  7. Jiang, B., Meng, H., Ma, X., Wang, L., Zhou, Y., Xu, P., Jiang, S., Meng, X.: Nighttime image dehazing with modified models of color transfer and guided image filter. Multimed. Tools Appl. 77(3), 3125–3141 (2018)

    Google Scholar 

  8. Xie, C.H., Qiao, W.Q., Liu, Z., Ying, W.H.: Single image dehazing using kernel regression model and dark channel prior. SIViP 11(4), 705–712 (2015)

    Google Scholar 

  9. ITU-T. REC. P. 910: Subjective audiovisual quality assessment methods for multimedia applications (2008)

  10. Niu, Y., Zhang, H., Guo, W., Ji, R.: Image quality assessment for color correction based on color contrast similarity and color value difference. IEEE Trans. Circuits Syst. Video Technol. 28(4), 849–862 (2018)

    Google Scholar 

  11. Gu, K., Wang, S., Zhai, G., Ma, S., Yang, X., Zhang, W.: Content-weighted mean-squared error for quality assessment of compressed images. SIViP 10(5), 803–810 (2016)

    Google Scholar 

  12. Gupta, S., Gore, A., Kumar, S., Mani, S., Srivastava, P.K.: Objective color image quality assessment based on Sobel magnitude. SIViP 11(1), 123–128 (2017)

    Google Scholar 

  13. Kerouh, F., Serir, A.: Wavelet-based blind blur reduction. SIViP 9(7), 1587–1599 (2015)

    Google Scholar 

  14. Yang, J., Huang, Z., Sim, K., Lu, W., Liu, K., Liu, H.: No-reference image quality assessment focusing on human facial region. Signal Process. Image Commun. 78, 51–61 (2019)

    Google Scholar 

  15. Rohil, M.K., Gupta, N., Yadav, P.: An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis. Signal Image Video Proces. (2019). https://doi.org/10.1007/s11760-019-01543-z

    Article  Google Scholar 

  16. Kerouh, F., Ziou, D., Serir, A.: Histogram modelling-based no reference blur quality measure. J. Image Commun. image Represent. 60(C), 22–28 (2018)

    Google Scholar 

  17. Ait Abdelouahad, A., El Hassoun, M., Cherifi, H., Aboutajdine, D.: Reduced reference image quality assessment based on statistics in empirical mode decomposition domain. SIViP 8(8), 1663–1680 (2014)

  18. Miao, X., Lee, D., Cheng, X., Yang, X.: Reduced-reference image quality assessment based on improved local binary pattern. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Turek, M., Ramalingam, S., Xu, K., Lin, S., Alsallakh, B., Yang, J., Cuervo, E., Ventura, J. (eds.) Advances in Visual Computing, pp. 382–294. Springer (2018)

  19. Kalatehjari, E., Yaghmaee, F.: A new reduced-reference image quality assessment based on the SVD signal projection. Multimed. Tools Appl. 77, 25053–25076 (2018)

    Google Scholar 

  20. Zhang, H., Li, Y., Li, S., Liu, Y.: Reduced-reference image quality assessment method based on wavelet feature extraction and fusion. IOP Conf. Ser. Mater. Sci. Eng. 569, 1–8 (2019)

    Google Scholar 

  21. Gaurav, S., Dalal, W., Edul, N.: The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Pattern Anal. Appl. 30(1), 21–30 (2005)

    Google Scholar 

  22. Hassan, M., Bhagvati, C.: Structural similarity measure for color images. Int. J. Comput. Appl. 43(14), 7–12 (2012)

    Google Scholar 

  23. Hore, A., Ziou, D.: Is there a relationship between peak-signal-to-noise ratio and structural similarity index measure? IET Image Proc. 7(1), 12–24 (2013)

    MathSciNet  Google Scholar 

  24. Yalman, Y., Erturk, I.: A new color image quality measure based on YUV transformation and PSNR for human vision system. Turk. J. Electr. Eng. Comput. Sci. 21, 603–612 (2013)

    Google Scholar 

  25. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42(1–2), 143–175 (2001)

    MATH  Google Scholar 

  26. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  27. Arnold, K.J.: On spherical probability distributions. Technical report, Massachusetts Institute of technology (1941)

  28. Dhillon, I.S., Sra, S.: Modeling data using directional distributions. Utcs Technical Report (2003)

  29. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises–Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Gopal, S., Yang, Y.: von Mises–Fisher clustering models. In: Proceedings of the International Conference on Machine Learning, pp. 154–162 (2014)

  31. Amayri, O., Bouguila, N.: Beyond hybrid generative discriminative learning: spherical data classification. Pattern Anal. Appl. 18, 113–133 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Palacios, A.R., Rodriguez, C., Vejarano, C.: Circulat processing of the hue variable. In: Proceedings of the Second International Conference on Computer Vision Theory and Applications, vol. 1, pp. 69–76 (2007)

  33. Gabarda, S., Cristobal, G.: No-reference image quality assessment through the von Mises distribution. J. Opt. Soc. Am. 29(10), 2058–2066 (2012)

    Google Scholar 

  34. Yang, M.S., Chien, S.J., Hung, W.L.: Learning-based EM clustering for data on the unit hypersphere with application to exoplanet data. Appl. Soft Comput. 60, 101–114 (2017)

    Google Scholar 

  35. Yang, M.S., Chien, S.J., Hung, W.L.: An unsupervised clustering algorithm for data on the unit hypersphere. Appl. Soft Comput. 42, 290–313 (2016)

    Google Scholar 

  36. Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Feature engineering strategies for credit card fraud detection. Expert Syst. Appl. 51, 134-14276-82 (2016)

    Google Scholar 

  37. Diethe, T.R.: A Note on the Kullback–Leibler Divergence for the von Mises–Fisher distribution. arXiv:1502.07104 1–8 (2015)

  38. Bruni, V., Rossi, E., Vitulano, D.: Jensen–Shannon divergence for visual quality assessment. SIViP 7, 411–421 (2013)

    Google Scholar 

  39. Omari, M., Ait Abdelouahad, A., El Hassouni, M., Herifi, H.: Color image quality assessment measure using multivariate generalized Gaussian distribution. arXiv:1412.0111v1 1–8 (2014)

  40. Tomaszewska, A.L.: Scene reduction for subjective image quality assessment. J. Electron. Imaging 25(1), 1–13 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kerouh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerouh, F., Ziou, D. & Jiang, Q. Directional statistics-based quality measure for spotlight color images. SIViP 14, 1125–1132 (2020). https://doi.org/10.1007/s11760-020-01653-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01653-z

Keywords