[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Three-dimensional skeletonization and symbolic description in vascular imaging: preliminary results

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

A general method was developed to analyze and describe tree-like structures needed for evaluation of complex morphology, such as the cerebral vascular tree. Clinical application of the method in neurosurgery includes planning of the surgeon’s intraoperative gestures.

Method

We have developed a 3D skeletonization method adapted to tubular forms with symbolic description. This approach implements an iterative Dijkstra minimum cost spanning tree, allowing a branch-by-branch skeleton extraction. The proposed method was implemented using the laboratory software platform (ArtiMed). The 3D skeleton approach was tested on simulated data and preliminary trials on clinical datasets mainly based on magnetic resonance image acquisitions.

Results

A specific experimental evaluation plan was designed to test the skeletonization and symbolic description methods. Accuracy was tested by calculating the positioning error, and robustness was verified by comparing the results on a series of 18 rotations of the initial volume. Accuracy evaluation showed a Haussdorff’s distance always smaller than 17 voxels and Dice’s similarity coefficient greater than 70 %.

Conclusion

Our method of symbolic description enables the analysis and interpretation of a vascular network obtained from angiographic images. The method provides a simplified representation of the network in the form of a skeleton, as well as a description of the corresponding information in a tree-like view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerig G, Kollera T, Szekely G, Brechbuhler C, Kubler O (1993) Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Proceedings of 13th international conference on information processing in medical imaging, IPMI’93, series Lecture Notes in Computer Science, vol 687, pp 94–111

  2. Bullit E, Aylward S, Smith K, Mukherji S, Jiroutek M, Muller K: Symbolic description of intracerebral vessels segmented from magnetic resonance angiograms and evaluation by comparison with X-ray angiograms. Med Image Anal 5, 157–169 (2001)

    Article  Google Scholar 

  3. Megalooikonomou V, Barnathan M, Kontos D, Bakic PR, Maidment ADA: A representation and classification scheme for tree-like structures in medical images : analyzing the branching pattern of ductal trees in X-ray galactograms. IEEE Trans Med Imaging 28(4), 487–793 (2009)

    Article  PubMed  Google Scholar 

  4. Palagyi K, Hoffman JTEA, Sonka M: Quantitative analysis of pulmonary airway tree structures. Comput Biol Med 36(9), 974–996 (2006)

    Article  PubMed  Google Scholar 

  5. Chen Z, Molloi S: Automatic 3D vascular tree construction in CT angiography. Comput Med Imaging Graphics 27, 469–479 (2003)

    Article  Google Scholar 

  6. Mohan V, Sundaramoorthi G, Stillman A, Tannenbaum A (2009) Vessel segmentation with automatic centerline extraction using tubular tree segmentation. In: Proceedings of the cardiac interventional imaging and biophysical modelling workshop, Int Conf Med Image Comput Comput Assist Interv

  7. Wang Y, Li J, Chen S: A novel method of extracting 3D blood vessel images axis based on energy constraint equation. J Comput Inf Syst 7(4), 1319–1327 (2011)

    Google Scholar 

  8. Kirbas C, Quek F: A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2), 81–121 (2004)

    Article  Google Scholar 

  9. Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y: Model based detection of tubular structures in 3D images. Comput Vis Image Underst 80, 130–171 (2000)

    Article  Google Scholar 

  10. Palagyi K, Kuba A: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognit Lett 19(613), 627 (1998)

    Google Scholar 

  11. Lam L, Lee SW, Suen CY: Thinning methodologies—a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14, 869–885 (1992)

    Article  Google Scholar 

  12. Maddah M, Kusha AA, Zadeh HS: Efficient center-line extraction for quantification of vessels in confocal microscopy images. Med Phys 30, 204–211 (2003)

    Article  PubMed  Google Scholar 

  13. Saha P, Chaudhury B, Majumder D: A new shape-preserving parallel thinning algorithm for 3D digital images. Pattern Recognit 30, 1939–1955 (1997)

    Article  Google Scholar 

  14. Aylward S, Bullit E: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Med Imaging 21, 61–75 (2002)

    Article  PubMed  Google Scholar 

  15. Bouix S, Siddiqi K, Tannenbaum A (2003) Flux driven fly throughs. In: Proceedings of the 2003 IEEE computer society conference on computer vision and pattern recognition (CVPR’03), Madison pp 1:449–454

  16. Saito T, Toriwaki J (1995) A sequential thinning algorithm for three dimensional digital pictures using the Euclidean distance transformation. In: Proceedings, 9th scandinavian conference on image analysis (SCIA/95). Uppsala, pp 507–516

  17. Lesage D, Angelini ED, Bloch I, Funka-Lea G: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6), 819–845 (2009)

    Article  PubMed  Google Scholar 

  18. Nystroem I: Skeletonization applied to magnetic resonance angiography images. Proc Med Imaging 3338, 693–701 (2003)

    Google Scholar 

  19. Toriwaki J, Mori K: Distance transformation and skeletonization of 3D pictures and their applications to medical images. Digit Image Geom ser.Lecture Notes in Computer Science 2243, 412–429 (2001)

    Article  Google Scholar 

  20. Mori K, Hasegawa J, Toriwaki J, Anno H, Katada K: A fast rendering method using the tree structure of objects in virtualized bronchus endoscope system. Lect Notes Comput Sci 1131, 33–42 (1996)

    Article  Google Scholar 

  21. Mori K, Hasegawa J, Suenaga Y (1998) Automated labeling of bronchial branches in virtual bronchoscopy system. Medical Image Computing and Computer-Assisted Interventation—MICCAI’98, Lecture Notes in Computer Science, pp 1496:870–878

  22. Antiga L, Iordache BE, Remuzzi A: Computational geometry for patient-specific reconstruction and meshing of blood vessels from angiography. IEEE Trans Med Imaging 22, 674–684 (2003)

    Article  PubMed  Google Scholar 

  23. Wan S, Kiraly A, Ritman E, Higgins W: Extraction of the hepatic vasculature in rats using 3-D micro-CT images. IEEE Trans Med Imaging 19, 964–971 (2000)

    Article  PubMed  CAS  Google Scholar 

  24. Wan S, Ritman E, Higgins W: Multi-generational analysis and visualization of the vascular tree in 3D micro-CT images. Comput Biol Med 32, 55–71 (2002)

    Article  PubMed  Google Scholar 

  25. Wood S, Zerhouni A, Hoford J, Hoffman EA, Mitzner W: Measurement of three-dimensional lung tree structures using computed tomography. Appl Physiol 79, 1687–1697 (1995)

    CAS  Google Scholar 

  26. Deschamps T, Cohen LD: Fast extraction of minimal path in 3D images and applications to virtual endoscopy. Med Image Anal 5, 281–299 (2001)

    Article  PubMed  CAS  Google Scholar 

  27. Hassan T, Timofeev Ev, Saito T, Shimizu H, Ezura M, Matsumoto Y, Takayama K, Tominaga T, Takahashi A (2005) A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. Am J Neuroradiol 103(4):662–680. Erratum in: J Neurosurg. 2005 Dec;103(6):1110

  28. Qi A, Xu J (2010) Skeleton extraction of cerebral vascular image based on topology node. In: 3rd international conference on biomedical engineering and informatics (BMEI), vol 7. pp 569–573

  29. Zhang G, Feng D (2010) Skeleton extraction of cerebral vascular image based on level set model. In: 3rd International conference on Biomedical Engineering and Informatics (BMEI), 2010, pp 2:564–568

  30. Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R: Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39(5), 386–393 (2007)

    Article  PubMed  Google Scholar 

  31. Wan M, Liang Z, Ke Q, Hong L, Bitter I, Kaufman A: Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 21(12), 1450–1460 (2008)

    Google Scholar 

  32. Hilditch CJ: Linear skeletons from square cupboards. Mach Intell 4, 404–420 (1969)

    Google Scholar 

  33. Vermandel M, Betrouni N, Taschner C, Vasseur C, Rousseau J: From MIP image to MRA segmentation using fuzzy set theory. Comput Med Imaging Graphics 31(3), 128–140 (2007)

    Article  Google Scholar 

  34. Dewalle-Vignion AS, Betrouni N, Lopes R, Huglo D, Stute S, Vermandel M: A new method for volume segmentation of PET images, based on possibility theory. IEEE Trans Med Imaging 30(2), 409–423 (2011)

    Article  PubMed  Google Scholar 

  35. Dewalle-Vignion AS, Betrouni N, Makni N, Huglo D, Rousseau J, Vermandel M (2008) A new method based on both fuzzy set and possibility theories for tumor volume segmentation on PET images. In: Conference proceedings IEEE engineering in medicines and biological society, Vancouver, Canada, pp 3122–3125

  36. Vermandel M, Dewalle AS, Puech P, Taschner C, Rousseau J, Betrouni N (2007) MRA segmentation algorithm using MIP and fuzzy set principles. Application to TOF contrast enhancement sequences. Int J Computer Assist Radiol Surg, pp 2:104–106

  37. Vermandel M, Betrouni N, Viard R, Dewalle AS, Blond S, Rousseau J (2007) Combining MIP images and fuzzy set principles for vessels segmentation : application to TOF MRA and CE-MRA. Int Conf IEEE Eng Med Biol Soc, pp 2007:6255–6258

  38. Naf M, Szekely G, Kikinis R, Shenton M, Kubler G: 3D Voronoï skeletons and their usage for the characterization and recognition of 3D organ shape. Comput Vis Graphics Image Process 66, 147–161 (1997)

    Article  Google Scholar 

  39. Hassan T, Ezura M, Timofeev Ev, Tominaga T, Saito T, Takahashi A, Takayama K, Yoshimoto T: Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. Am J Neuroradiol 25(1), 63–68 (2004)

    PubMed  Google Scholar 

  40. Dijkstra EW: A note on two problems in connexion with graphs. Numer Math 1(1), 269–271 (1959)

    Article  Google Scholar 

  41. Volkau I, Ng TT, Marchenko Y, Nowinski WL: On Geometric modeling of the human intracranial venous system. IEEE Trans Medical Imaging 27(6), 745–751 (2008)

    Article  Google Scholar 

  42. Volkau I, Zheng W, Baimouratov R, Aziz A, Nowinski WL: Geometric modeling of the human normal cerebral arterial system. IEEE Trans Med Imaging 24(4), 529–539 (2005)

    Article  PubMed  Google Scholar 

  43. Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M, Cataldo R, Cerello P, De Carlo F, Falaschi F, Fantacci ME, Gargano G, Kasae P, Torsello M: A novel multithreshold method for nodule detection in lung CT. Med Phys 36(8), 3607–3618 (2009)

    Article  PubMed  Google Scholar 

  44. Choi Sw, Seidel Hp: Hyperbolic Hausdorff distance for medial axis transform. Graphics Models 63(5), 369–384 (2001)

    Article  Google Scholar 

  45. Altman DG, Bland JM: Measurement in medicine: the analysis of method comparison studies. Statistician 32, 307–317 (1983)

    Article  Google Scholar 

  46. Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476), 307–310 (1986)

    Article  PubMed  CAS  Google Scholar 

  47. Stummer W, Beck T, Beyer W, Mehrkens JH, Obermeier A, Etminan N, Stepp H, Tonn JC, Baumgartner R, Herms J, Kreth FW: Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol 87(1), 103–109 (2008)

    Article  PubMed  CAS  Google Scholar 

  48. Guenot M, Isnard J, Catenoix H, Mauguiere F, Sindou M: SEEG-guided RF-thermocoagulation of epileptic foci: A therapeutic alternative for drug-resistant non-operable partial epilepsies. Adv Tech Stand Neurosurg 36, 61–78 (2011)

    Article  PubMed  CAS  Google Scholar 

  49. Cossu M, Schiariti M, Francione S, Fuschillo D, Gozzo F, Nobili L, Cardinale F, Castana L, Russo GL: Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. J Neurosurg Pediatr 9(3), 290–300 (2012)

    Article  PubMed  Google Scholar 

  50. Vermandel M, Dewalle AS, Puech P, Taschner C, Rousseau J, Betrouni N (2007) MRA segmentation algorithm using MIP and fuzzy set principles. In: Application to TOF contrast enhancement sequences. Computer Assisted Radiology and Surgery. International journal of computer assisted radiology and surgery, Berlin, Germany, pp S104–S106

  51. Betrouni N, Puech P, Dewalle AS, Lopes R, Dubois P, Vermandel M (2007) 3D automatic segmentation and reconstruction of prostate on MR images. Conf Proc IEEE Eng Med Biol Soc 2007:5259–5262

  52. Conversano F, Franchini R, Demitri C, Massoptier L, Montagna F, Maffezzoli A, Malvasi A, Casciaro S: Hepatic vessel segmentation for 3D planning of liver surgery experimental evaluation of a new fully automatic algorithm. Acad Radiol 18(4), 461–470 (2011)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vermandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verscheure, L., Peyrodie, L., Dewalle, A.S. et al. Three-dimensional skeletonization and symbolic description in vascular imaging: preliminary results. Int J CARS 8, 233–246 (2013). https://doi.org/10.1007/s11548-012-0784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0784-4

Keywords

Navigation