[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On the uncertainty quantification of the active uterine contraction during the second stage of labor simulation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Uterine contractions in the myometrium occur at multiple scales, spanning both organ and cellular levels. This complex biological process plays an essential role in the fetus delivery during the second stage of labor. Several finite element models of active uterine contractions have already been developed to simulate the descent of the fetus through the birth canal. However, the developed models suffer severe reliability issues due to the uncertain parameters. In this context, the present study aimed to perform the uncertainty quantification (UQ) of the active uterine contraction simulation to advance our understanding of pregnancy mechanisms with more reliable indicators. A uterus model with and without fetus was developed integrating a transversely isotropic Mooney-Rivlin material with two distinct fiber orientation architectures. Different contraction patterns with complex boundary conditions were designed and applied. A global sensitivity study was performed to select the most valuable parameters for the uncertainty quantification (UQ) process using a copula-based Monte Carlo method. As results, four critical material parameters (\({C}_{1},{C}_{2}, K, {Ca}_{0}\)) of the active uterine contraction model were identified and used for the UQ process. The stress distribution on the uterus during the fetus descent, considering first and second fiber orientation families, ranged from 0.144 to 1.234 MPa and 0.044 to 1.619 MPa, respectively. The simulation outcomes revealed also the segment-specific contraction pattern of the uterus tissue. The present study quantified, for the first time, the effect of uncertain parameters of the complex constitutive model of the active uterine contraction on the fetus descent process. As perspectives, a full maternal pelvis model will be coupled with reinforcement learning to automatically identify the delivery mechanism behind the cardinal movements of the fetus during the active expulsion process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen S, Grimm MJ (2021) Childbirth computational models: characteristics and applications. J Biomech Eng 143(5):050801

    Article  PubMed  Google Scholar 

  2. Vila Pouca MCP, Ferreira JPS, Oliveira DA, Parente MPL, Mascarenhas MT, Natal Jorge RM (2019) Simulation of the uterine contractions and foetus expulsion using a chemo-mechanical constitutive model. Biomech Model Mechanobiol 18(3):829–843

    Article  CAS  PubMed  Google Scholar 

  3. Yan X, Kruger JA, Li X, Nielsen PM, Nash MP (2016) Modeling the second stage of labor. Wiley Interdiscip Rev: Syst Biol Med 8(6):506–516

    PubMed  Google Scholar 

  4. Li X, Kruger JA, Nash MP, Nielsen PM (2010) Modeling childbirth: elucidating the mechanisms of labor. Wiley Interdiscip Rev: Syst Biol Med 2(4):460–470

    PubMed  Google Scholar 

  5. Oliveira D, Parente M, Mascarenhas T, Natal Jorge R (2018) Biomechanical analysis of the damage in the pelvic floor muscles during childbirth. In: Brandão S, Da Roza T, Ramos I, Mascarenhas T (eds) Women's health and biomechanics. Lecture notes in computational vision and biomechanics, vol 29. Springer, Cham, pp 133–142. https://doi.org/10.1007/978-3-319-71574-2_11

  6. Payan Y, Ohayon J (2017) Biomechanics of living organs: hyperelastic constitutive laws for finite element modeling. Academic Press, 602 pp. https://doi.org/10.1016/C2015-0-00832-2

  7. Zara F (2023) Chapter 15 - Numerical simulation of vaginal delivery. In: Brieu M, Cosson M, Nielsen P (eds) Biomechanics of living organs, biomechanics of the female reproductive system: breast and pelvic organs, vol 2023. Academic Press, pp 379–413. https://doi.org/10.1016/B978-0-12-823403-7.00029-4

  8. Mangado N, Piella G, Noailly J, Pons-Prats J, Ballester MÁG (2016) Analysis of uncertainty and variability in finite element computational models for biomedical engineering: characterization and propagation. Front Bioeng Biotechnol 4:85

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lepage J, Jayyosi C, Lecomte-Grosbras P, Brieu M, Duriez C, Cosson M, Rubod C (2015) Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results. Int Urogynecol J 26:497–504

    Article  CAS  PubMed  Google Scholar 

  10. Martins JAC, Pato MPM, Pires EB, Jorge RN, Parente M, Mascarenhas T (2007) Finite element studies of the deformation of the pelvic floor. Ann N Y Acad Sci 1101(1):316–334

    Article  CAS  PubMed  Google Scholar 

  11. Parente MPL, Jorge RN, Mascarenhas T, Fernandes AA, Martins JAC (2008) Deformation of the pelvic floor muscles during a vaginal delivery. Int Urogynecol J 19:65–71

    Article  CAS  Google Scholar 

  12. Parente MP, Jorge RMN, Mascarenhas T, Fernandes AA, Silva-Filho AL (2010) Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol 203(3):217-e1

    Article  Google Scholar 

  13. Gerikhanov Z, Audinis V, Lapeer R (2013) Towards a forward engineered simulation of the cardinal movements of human childbirth. E-Health and Bioengineering Conference (EHB), Iasi, pp 1–4. https://doi.org/10.1109/EHB.2013.6707394

  14. Krofta L, Havelková L, Urbánková I, Krčmář M, Hynčík L, Feyereisl J (2017) Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery. Int Urogynecol J 28:275–284

    Article  PubMed  Google Scholar 

  15. Jansova M, Kalis V, Rusavy Z, Zemcik R, Lobovsky L, Laine K (2014) Modeling manual perineal protection during vaginal delivery. Int Urogynecol J 25:65–71

    Article  PubMed  Google Scholar 

  16. Jansova M, Kalis V, Rusavy Z, Räisänen S, Lobovsky L, Laine K (2017) Fetal head size and effect of manual perineal protection. PLoS ONE 12(12):e0189842

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vila Pouca MCP, Ferreira JPS, Oliveira DA, Parente MPL, Natal Jorge RM (2018) Viscous effects in pelvic floor muscles during childbirth: a numerical study. Int J Numer Methods Biomed Eng 34(3):e2927

    Article  Google Scholar 

  18. Buttin R, Zara F, Shariat B, Redarce T, Grangé G (2013) Biomechanical simulation of the fetal descent without imposed theoretical trajectory. Comput Methods Programs Biomed 111(2):389–401

    Article  PubMed  Google Scholar 

  19. Sharifimajd B, Thore CJ, Stålhand J (2016) Simulating uterine contraction by using an electro-chemo-mechanical model. Biomech Model Mechanobiol 15:497–510

    Article  PubMed  Google Scholar 

  20. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 1:28–44

    Article  Google Scholar 

  21. Yan X, Kruger JA, Nielsen PM, Nash MP (2015) Effects of fetal head shape variation on the second stage of labour. J Biomech 48(9):1593–1599

    Article  PubMed  Google Scholar 

  22. Nguyen TNT, Ballit A, Lecomte-Grosbras P, Colliat JB, Dao TT (2023) On the uncertainty quantification of hyperelastic properties using precise and imprecise probabilities toward reliable in silico simulation of the second-stage labor. J Mech Med Biol 23(8):2350083. https://doi.org/10.1142/S0219519423500835

  23. Narayan A, Liu Z, Bergquist JA, Charlebois C, Rampersad S, Rupp L, Brooks D, White D, Tate J, MacLeod RS (2023) UncertainSCI: uncertainty quantification for computational models in biomedicine and bioengineering. Comput Biol Med 152:106407

    Article  PubMed  Google Scholar 

  24. Liu Z, Narayan A (2021) On the computation of recurrence coefficients for univariate orthogonal polynomials. J Sci Comput 88(3):53. https://doi.org/10.1007/s10915-021-01586-w

  25. Bibin L, Anquez J, Angelini E, Bloch I (2010) Hybrid 3D pregnant woman and fetus modeling from medical imaging for dosimetry studies. Int J Comput Assist Radiol Surg 5:49–56

    Article  PubMed  Google Scholar 

  26. Fidalgo DS, Pouca MV, Oliveira DA, Malanowska E, Myers KM, Jorge RN, Parente MPL (2021) Mechanical effects of a maylard scar during a vaginal birth after a previous caesarean. Ann Biomed Eng 49(12):3593–3608

    Article  CAS  PubMed  Google Scholar 

  27. https://help.febio.org/FebioUser/FEBio_um_3-4-Subsection-3.13.1.html.

  28. Beckmann CRB, Herbert W, Laube D, Ling F, Smith R (2013) Chapter 8 intrapartum care. In: Obstetrics and gynecology, 7th edn. Lippincott, Williams & Wilkins, Philadelphia. https://books.google.fr/books?id=dD-emqhOXa0C

  29. Escalante NMM, Pino JH (2017) Arrangement of muscle fibers in the myometrium of the human uterus: a mesoscopic study. MOJ Anat Physiology 4(2):131–135

    Google Scholar 

  30. Kroon M (2010) A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour. Math Med Biol: J IMA 27(2):129–155

    Article  Google Scholar 

  31. Weiss S, Jaermann T, Schmid P, Staempfli P, Boesiger P, Niederer P, Caduff R, Bajka M (2006) Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Record Part A: Dis Mol, Cell Evol Biol: An Off Publ Am Assoc Anatomists 288(1):84–90

    Google Scholar 

  32. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135(1–2):107–128

    Article  Google Scholar 

  33. Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113(1):42–55. https://doi.org/10.1115/1.2894084

  34. Guccione JM, McCulloch AD (1993) Mechanics of active contraction in cardiac muscle: Part I--Constitutive relations for fiber stress that describe deactivation. J Biomech Eng 115(1):72–81. https://doi.org/10.1115/1.289547

  35. Guccione JM, Waldman LK, McCulloch AD (1993) Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle. J Biomech Eng 115(1):82–90. https://doi.org/10.1115/1.2895474

  36. Puso MA, Weiss JA (1998) Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng 120(1):62–70. https://doi.org/10.1115/1.2834308

  37. Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120(6):757–763. https://doi.org/10.1115/1.2834890

  38. Weiss JA (1994) A constitutive model and finite element representation for transversely isotropic soft tissues. PhD Thesis. Department of Bioengineering, University of Utah, 222 pp. https://books.google.fr/books?id=U4U5ywAACAAJ

  39. Tözeren A (1985) Continuum rheology of muscle contraction and its application to cardiac contractility. Biophys J 47(3):303–309

    Article  PubMed  PubMed Central  Google Scholar 

  40. Winkler B, Nagel C, Farchmin N, Heidenreich S, Loewe A, Dössel O, Bär M (2022) Global sensitivity analysis and uncertainty quantification for simulated atrial electrocardiograms. Metrology 3(1):1–28

    Article  Google Scholar 

  41. Parente MPL, Jorge RN, Mascarenhas T, Fernandes AA, Martins JAC (2009) The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J Biomech 42(9):1301–1306

    Article  CAS  PubMed  Google Scholar 

  42. Lapeer R, Gerikhanov Z, Sadulaev SM, Audinis V, Rowland R, Crozier K, Morris E (2019) A computer-based simulation of childbirth using the partial Dirichlet-Neumann contact method with total Lagrangian explicit dynamics on the GPU. Biomech Model Mechanobiol 18:681–700

    Article  PubMed  Google Scholar 

  43. Oliveira DA, Parente MP, Calvo B, Mascarenhas T, Jorge RMN (2016) A biomechanical analysis on the impact of episiotomy during childbirth. Biomech Model Mechanobiol 15:1523–1534

    Article  PubMed  Google Scholar 

  44. Röhrle O (2010) Simulating the electro-mechanical behavior of skeletal muscles. Comput Sci Eng 12(6):48–58

    Article  Google Scholar 

  45. Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT (2011) Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 3(9):a004549

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu Y, Qu J, He L, Zhang F, Zhou Z, Yang S, Zhou Y (2019) Calcium in vascular smooth muscle cell elasticity and adhesion: novel insights into the mechanism of action. Front Physiol 10:852

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jiang H, Stephens NL (1994) Calcium and smooth muscle contraction. Mol Cell Biochem 135:1–9

    Article  CAS  PubMed  Google Scholar 

  48. Manoogian SJ, Bisplinghoff JA, Kemper AR, Duma SM (2012) Dynamic material properties of the pregnant human uterus. J Biomech 45(9):1724–1727

    Article  PubMed  Google Scholar 

  49. Jenssen H (1973) The effect of paracervical block on cervical dilatation and uterine activity. Acta Obstet Gynecol Scand 52(1):13–22

    Article  CAS  PubMed  Google Scholar 

  50. Ballit A, Hivert M, Rubod C, Dao TT (2023) Fast soft-tissue deformations coupled with mixed reality toward the next-generation childbirth training simulator. Med Biol Eng Compu 61(8):2207–2226

    Article  Google Scholar 

  51. Fidalgo DS, Borges M, Pouca MV, Oliveira DA, Malanowska E, Myers KM (2022) On the effect of irregular uterine activity during a vaginal delivery using an electro-chemo-mechanical constitutive model. J Mech Behav Biomed Mater 131:105250

    Article  CAS  PubMed  Google Scholar 

  52. Ashton-Miller JA, DeLancey JO (2009) On the biomechanics of vaginal birth and common sequelae. Annu Rev Biomed Eng 11:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jing D, Ashton-Miller JA, DeLancey JO (2012) A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech 45(3):455–460

    Article  PubMed  Google Scholar 

  54. Fang S, McLean J, Shi L, Vink JSY, Hendon CP, Myers KM (2021) Anisotropic mechanical properties of the human uterus measured by spherical indentation. Ann Biomed Eng 49:1923–1942

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shi L, Yao W, Gan Y, Zhao LY, Eugene McKee W, Vink J, Wapner RJ, Hendon CP, Myers K (2019) Anisotropic material characterization of human cervix tissue based on indentation and inverse finite element analysis. J Biomech Eng 141(9):091017

    Article  Google Scholar 

  56. Baah-Dwomoh A, McGuire J, Tan T, De Vita R (2016) Mechanical properties of female reproductive organs and supporting connective tissues: a review of the current state of knowledge. Appl Mech Rev 68(6):060801

    Article  Google Scholar 

  57. Jimenez E, Liu Y, Hussaini MY (2013) Variance reduction method based on sensitivity derivatives, part 2. Appl Numer Math 74:151–159

    Article  Google Scholar 

  58. Hauseux P, Hale JS, Cotin S, Bordas SP (2018) Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters. Appl Math Model 62:86–102

    Article  Google Scholar 

  59. Girolami M, Calderhead B (2011) Riemann manifold langevin and hamiltonian monte carlo methods. J R Stat Soc Ser B Stat Methodol 73(2):123–214

    Article  Google Scholar 

  60. Lan S, Bui-Thanh T, Christie M, Girolami M (2016) Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian inverse problems. J Comput Phys 308:81–101

    Article  Google Scholar 

  61. Hauseux P, Hale JS, Bordas SP (2017) Accelerating Monte Carlo estimation with derivatives of high-level finite element models. Comput Methods Appl Mech Eng 318:917–936

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Métropole Européenne de Lille (MEL) and ISITE ULNE (R-TALENT-20–009-DAO) for providing financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Tuan Dao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TNT., Ballit, A., Lecomte-Grosbras, P. et al. On the uncertainty quantification of the active uterine contraction during the second stage of labor simulation. Med Biol Eng Comput 62, 2145–2164 (2024). https://doi.org/10.1007/s11517-024-03059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03059-2

Keywords

Navigation