Abstract
Caesarean section is one of the most common surgeries worldwide, even though there is no evidence supporting maternal and perinatal long-term benefits. Furthermore, the mechanical behavior of a caesarean scar during a vaginal birth after caesarean (VBAC) is not well understood since there are several questions regarding the uterine wound healing process. The aim of this study is to investigate the biomechanical Maylard fiber reorientation and stiffness influence during a VBAC through computational methods. A biomechanical model comprising a fetus and a uterus was developed, and a chemical–mechanical constitutive model that triggers uterine contractions was used, where some of the parameters were adjusted to account for the matrix and fiber stiffness increase in the caesarean scar. Several mechanical simulations were performed to analyze different scar fibers arrangements, considering different values for the respective matrix and fibers stiffness. The results revealed that a random fiber arrangement in the Maylard scar has a much higher impact on its mechanical behavior during a VBAC than the common fibers arrangement present in the uninjured uterine tissue. An increase of the matrix scar stiffness exhibits a lower impact, while an increase of the fiber’s stiffness has no significant influence.
Similar content being viewed by others
Abbreviations
- VBAC:
-
Vaginal birth after caesarean
- CS:
-
Caesarean section
- FE:
-
Finite element
- MLCK:
-
Myosin Light Chain Kinase
- HGO:
-
Holzapfel-Gasser-Ogden
- CM:
-
Control Model
- IM:
-
Increased Matrix Stiffness Model
- IF:
-
Increases Fiber Stiffness Model
- RF:
-
Random Fiber Distribution Model
- CF:
-
Circumferential Fibers Model
- LF:
-
Longitudinal Fibers Model
- SVB:
-
Second Vaginal Birth
- MR:
-
Magnetic Resonance
- DTI:
-
Diffusion Tensor Imaging
References
Betrán, A. P., J. Ye, A. B. Moller, J. Zhang, A. M. Gülmezoglu, and M. R. Torloni. The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. PLoS ONE 11(2):1–12, 2016. https://doi.org/10.1371/journal.pone.0148343.
Bisplinghoff, J. A., A. R. Kemper, and S. M. Duma. Dynamic material properties of the pregnant human uterus. J Biomech. 45(9):1724–1727, 2012. https://doi.org/10.1016/j.jbiomech.2012.04.001.
Brandão, S., T. Da Roza, M. Parente, I. Ramos, T. Mascarenhas, and R. M. N. Jorge. Magentic resonance imaging of the pelvic floor: from clinical to biomechanical imgaing. Proc Inst Mech eng Part H J Eng Med. 227(12):1324–1332, 2013. https://doi.org/10.1177/0954411913502952.
Buhimschi, C. S., I. A. Buhimschi, S. Patel, A. M. Malinow, and C. P. Weiner. Rupture of the uterine scar during term labour: contractility or biochemistry? BJOG An Int J Obstet Gynaecol. 112(1):38–42, 2005. https://doi.org/10.1111/j.1471-0528.2004.00300.x.
Buhimschi, C. S., G. Zhao, N. Sora, J. A. Madri, and I. A. Buhimschi. Myometrial wound healing post-cesarean delivery in the MRL/MPJ mouse model of uterine scarring. Am J Pathol. 177(1):197–207, 2017. https://doi.org/10.2353/ajpath.2010.091209.
Bursztyn, L., O. Eytan, A. J. Jaffa, and D. Elad. Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am J Physiol - Cell Physiol. 292(5):1816–1829, 2007. https://doi.org/10.1152/ajpcell.00478.2006.
Buttin, R., F. Zara, B. Shariat, T. Redarce, and G. Grangé. Biomechanical simulation of the fetal descent without imposed theoretical trajectory. Comput Methods Programs Biomed. 111(2):389–401, 2013. https://doi.org/10.1016/j.cmpb.2013.04.005.
Clark, J. A., J. C. Y. Cheng, and K. S. Leung. Mechanical properties of normal skin and hypertrophic scars. Burns. 22(6):443–446, 1996. https://doi.org/10.1016/0305-4179(96)00038-1.
Cochran, A. L., and Y. Gao. A model and simulation of uterine contractions. Math Mech Solids. 20(5):540–564, 2015. https://doi.org/10.1177/1081286513507940.
Davidson, C. J., L. R. Ganion, G. M. Gehlsen, B. Verhoestra, J. E. Roepke, and T. L. Sevier. Rat tendon morphologic and functional changes resulting from soft tissue mobilization. Med Sci Sports Exerc. 29(3):313–319, 1997. https://doi.org/10.1097/00005768-199703000-00005.
Giacalone, P. L., J. P. Daures, J. Vignal, C. Herisson, B. Hedon, and F. Laffargue. Pfannenstiel versus maylard incision for cesarean delivery: a randomized controlled trial. Obstet Gynecol. 99(5):745–750, 2002. https://doi.org/10.1016/s0029-7844(02)01957-9.
Goeckeler, Z. M., and R. B. Wysolmerski. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol. 130(3):613–627, 1995. https://doi.org/10.1083/jcb.130.3.613.
Gonser, M., I. Schmeil, A. Klee, and C. Zumdick. Can third-trimester assessment of uterine scar in women with prior Cesarean section predict uterine rupture? Ultrasound Obstet Gynecol. 48(4):537–538, 2016. https://doi.org/10.1002/uog.15999.
Hicklin, K. T., J. S. Ivy, J. R. Wilson, F. Cobb Payton, M. Viswanathan, and E. R. Myers. Simulation model of the relationship between cesarean section rates and labor duration. Health Care Manag Sci. 22(4):635–657, 2019. https://doi.org/10.1007/s10729-018-9449-3.
Jakeman, A. R. Maternal positioning in the second stage of labor and incidence of spontaneous perineal trauma: a systematic review with meta-analysis of randomized controlled trials. [Internet]. 2016.
Kiserud, T., G. Piaggio, and G. Carroli. The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. 2017. https://doi.org/10.1371/journal.pmed.1002220.
Landon, M. B., C. Y. Spong, and E. Thom. Risk of uterine rupture with a trial of labor in women with multiple and single prior cesarean delivery. Obstet Gynecol. 108(1):12–20, 2006. https://doi.org/10.1097/01.AOG.0000224694.32531.f3.
Lindgren, L., and D. Holmlund. Friction between the fetal head and uterine wall during normal labor and lower uterine spasm. Am J Obstet Gynecol. 103(7):939–941, 1969. https://doi.org/10.1016/S0002-9378(16)34442-8.
Mathai, M., and H. Gj. Abdominal surgical incisions for caesarean section (Review). Cochrane Libr. 2:28, 2009.
Naji, O., A. Daemen, and A. Smith. Changes in Cesarean section scar dimensions during pregnancy: a prospective longitudinal study. Ultrasound Obstet Gynecol. 41(5):556–562, 2013. https://doi.org/10.1002/uog.12334.
Naji, O., L. Wynants, and A. Smith. Predicting successful vaginal birth after Cesarean section using a model based on Cesarean scar features examined by transvaginal sonography. Ultrasound Obstet Gynecol. 41(6):672–678, 2013. https://doi.org/10.1002/uog.12423.
Molina, E. O., B. D. Noval, J. R. Suárez, R. H. Pailos, F. G. Sánchez, and J. G. González. Maylard’s incision: how to make an easy incision for complex pelvic abdominal surgery. Int J Gynecol Cancer. 30(1):154–155, 2020. https://doi.org/10.1136/ijgc-2019-000876.
Parente, M. P., R. M. N. Jorge, T. Mascarenhas, A. A. Fernandes, and A. L. Silva-Filho. Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol. 203(3):217.e1–217.e6, 2010. https://doi.org/10.1016/j.ajog.2010.03.038.
Pasquo, E., A. J. O. Kiener, and A. DallAsta. Evaluation of the uterine scar stiffness in women with previous Cesarean section by ultrasound elastography: a cohort study. Clin Imaging. 64:53–56, 2020. https://doi.org/10.1016/j.clinimag.2020.03.006.
Roeder, H. A., S. F. Cramer, and P. C. Leppert. A look at uterine wound healing through a histopathological study of uterine scars. Reprod Sci. 19(5):463–473, 2012. https://doi.org/10.1177/1933719111426603.
Rusavy, Z., E. Francova, L. Paymova, K. M. Ismail, and V. Kalis. Timing of cesarean and its impact on labor duration and genital tract trauma at the first subsequent vaginal birth: a retrospective cohort study. BMC Pregnancy Childbirth. 19(1):1–7, 2019. https://doi.org/10.1186/s12884-019-2359-7.
Seinera, P., P. Gaglioti, E. Volpi, M. A. Cau, and T. Todros. Ultrasound evaluation of uterine wound healing following laparoscopic myomectomy: preliminary results. Hum Reprod. 14(10):2460–2463, 1999. https://doi.org/10.1093/humrep/14.10.2460.
Sharifimajd, B., J. Ölvander, and J. Stålhand. Identification of the mechanical parameters for the human uterus in vivo using intrauterine pressure measurements. Int j numer method biomed eng. 33(1):1–11, 2017. https://doi.org/10.1002/cnm.2778.
Sharifimajd, B., and J. Stålhand. A continuum model for excitation-contraction of smooth muscle under finite deformations. J Theor Biol. 355:1–9, 2014. https://doi.org/10.1016/j.jtbi.2014.03.016.
Sharifimajd, B., C. J. Thore, and J. Stålhand. Simulating uterine contraction by using an electro-chemo-mechanical model. Biomech Model Mechanobiol. 15(3):497–510, 2016. https://doi.org/10.1007/s10237-015-0703-z.
Sholapurkar, S. L. Etiology of Cesarean Uterine Scar Defect (Niche): detailed Critical Analysis of Hypotheses and Prevention Strategies and Peritoneal Closure Debate. J Clin Med Res. 10(3):166–173, 2018. https://doi.org/10.14740/jocmr3271w.
Stålhand, J., A. Klarbring, and G. A. Holzapfel. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Prog Biophys Mol Biol. 96(1–3):465–481, 2008. https://doi.org/10.1016/j.pbiomolbio.2007.07.025.
Tanos, V., and Z. A. Toney. Uterine scar rupture - Prediction, prevention, diagnosis, and management. Best Pract Res Clin Obstet Gynaecol. 59:115–131, 2019. https://doi.org/10.1016/j.bpobgyn.2019.01.009.
Taylor, L. K., J. M. Simpson, C. L. Roberts, E. C. Olive, and D. J. Henderson-Smart. Risk of complications in a second pregnancy following caesarean section in the first pregnancy: a population-based study. Med J Aust. 183(10):515–519, 2005. https://doi.org/10.5694/j.1326-5377.2005.tb07152.x.
Vila Pouca, M. C. P., J. P. S. Ferreira, D. A. Oliveira, M. P. L. Parente, M. T. Mascarenhas, and R. M. Natal Jorge. Simulation of the uterine contractions and foetus expulsion using a chemo-mechanical constitutive model. Biomech Model Mechanobiol. 18(3):829–843, 2019. https://doi.org/10.1007/s10237-019-01117-5.
Weiss, S., T. Jaermann, and P. Schmid. Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec - Part A Discov Mol Cell Evol Biol. 288(1):84–90, 2006. https://doi.org/10.1002/ar.a.20274.
Wu, C., X. Chen, Z. Mei, J. Zhou, L. Wu, W. Chiu, and X. Xiao. A preliminary study of uterine scar tissue following cesarean section. J Perinat Med. 46(4):379–386, 2018. https://doi.org/10.1515/jpm-2016-0347.
Wu, Y., Y. Kataria, Z. Wang, W. K. Ming, and C. Ellervik. Factors associated with successful vaginal birth after a cesarean section: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 19(1):1–12, 2019. https://doi.org/10.1186/s12884-019-2517-y.
Wyckoff, E. T., G. M. Cua, D. J. Gibson, and R. S. Egerman. Efficacy of the NICHD vaginal birth after cesarean delivery calculator: a single center experience. J Matern Neonatal Med. 33(4):553–557, 2020. https://doi.org/10.1080/14767058.2018.1497597.
Yang, L., T. M. Witten, and R. M. Pidaparti. A biomechanical model of wound contraction and scar formation. J Theor Biol. 332:228–248, 2013. https://doi.org/10.1016/j.jtbi.2013.03.013.
Yochum, M., J. Laforêt, and C. Marque. An electro-mechanical multiscale model of uterine pregnancy contraction. Comput Biol Med. 77:182–194, 2016. https://doi.org/10.1016/j.compbiomed.2016.08.001.
Acknowledgments
The authors truly acknowledge the support from the Portuguese Foundation for Science and Technology (FCT) under Grant 2020.05400.BD and the Junior Researcher Contract 2020.01522.CEECIND. The support from the Associated Laboratory for Energy and Aeronautics (LAETA), trough project UIDB/50022/2020, and by the research project NORTE-01-0145-FEDER-030062 (SIM4SafeBirth) financed by NORTE2020, through FEDER are also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Stefan M Duma oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fidalgo, D.S., Pouca, M.C.P.V., Oliveira, D.A. et al. Mechanical Effects of a Maylard Scar During a Vaginal Birth After a Previous Caesarean. Ann Biomed Eng 49, 3593–3608 (2021). https://doi.org/10.1007/s10439-021-02805-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-021-02805-z