[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mechanical Effects of a Maylard Scar During a Vaginal Birth After a Previous Caesarean

  • Virtual Physiological Human
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Caesarean section is one of the most common surgeries worldwide, even though there is no evidence supporting maternal and perinatal long-term benefits. Furthermore, the mechanical behavior of a caesarean scar during a vaginal birth after caesarean (VBAC) is not well understood since there are several questions regarding the uterine wound healing process. The aim of this study is to investigate the biomechanical Maylard fiber reorientation and stiffness influence during a VBAC through computational methods. A biomechanical model comprising a fetus and a uterus was developed, and a chemical–mechanical constitutive model that triggers uterine contractions was used, where some of the parameters were adjusted to account for the matrix and fiber stiffness increase in the caesarean scar. Several mechanical simulations were performed to analyze different scar fibers arrangements, considering different values for the respective matrix and fibers stiffness. The results revealed that a random fiber arrangement in the Maylard scar has a much higher impact on its mechanical behavior during a VBAC than the common fibers arrangement present in the uninjured uterine tissue. An increase of the matrix scar stiffness exhibits a lower impact, while an increase of the fiber’s stiffness has no significant influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

VBAC:

Vaginal birth after caesarean

CS:

Caesarean section

FE:

Finite element

MLCK:

Myosin Light Chain Kinase

HGO:

Holzapfel-Gasser-Ogden

CM:

Control Model

IM:

Increased Matrix Stiffness Model

IF:

Increases Fiber Stiffness Model

RF:

Random Fiber Distribution Model

CF:

Circumferential Fibers Model

LF:

Longitudinal Fibers Model

SVB:

Second Vaginal Birth

MR:

Magnetic Resonance

DTI:

Diffusion Tensor Imaging

References

  1. Betrán, A. P., J. Ye, A. B. Moller, J. Zhang, A. M. Gülmezoglu, and M. R. Torloni. The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. PLoS ONE 11(2):1–12, 2016. https://doi.org/10.1371/journal.pone.0148343.

    Article  CAS  Google Scholar 

  2. Bisplinghoff, J. A., A. R. Kemper, and S. M. Duma. Dynamic material properties of the pregnant human uterus. J Biomech. 45(9):1724–1727, 2012. https://doi.org/10.1016/j.jbiomech.2012.04.001.

    Article  PubMed  Google Scholar 

  3. Brandão, S., T. Da Roza, M. Parente, I. Ramos, T. Mascarenhas, and R. M. N. Jorge. Magentic resonance imaging of the pelvic floor: from clinical to biomechanical imgaing. Proc Inst Mech eng Part H J Eng Med. 227(12):1324–1332, 2013. https://doi.org/10.1177/0954411913502952.

    Article  Google Scholar 

  4. Buhimschi, C. S., I. A. Buhimschi, S. Patel, A. M. Malinow, and C. P. Weiner. Rupture of the uterine scar during term labour: contractility or biochemistry? BJOG An Int J Obstet Gynaecol. 112(1):38–42, 2005. https://doi.org/10.1111/j.1471-0528.2004.00300.x.

    Article  Google Scholar 

  5. Buhimschi, C. S., G. Zhao, N. Sora, J. A. Madri, and I. A. Buhimschi. Myometrial wound healing post-cesarean delivery in the MRL/MPJ mouse model of uterine scarring. Am J Pathol. 177(1):197–207, 2017. https://doi.org/10.2353/ajpath.2010.091209.

    Article  Google Scholar 

  6. Bursztyn, L., O. Eytan, A. J. Jaffa, and D. Elad. Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am J Physiol - Cell Physiol. 292(5):1816–1829, 2007. https://doi.org/10.1152/ajpcell.00478.2006.

    Article  CAS  Google Scholar 

  7. Buttin, R., F. Zara, B. Shariat, T. Redarce, and G. Grangé. Biomechanical simulation of the fetal descent without imposed theoretical trajectory. Comput Methods Programs Biomed. 111(2):389–401, 2013. https://doi.org/10.1016/j.cmpb.2013.04.005.

    Article  PubMed  Google Scholar 

  8. Clark, J. A., J. C. Y. Cheng, and K. S. Leung. Mechanical properties of normal skin and hypertrophic scars. Burns. 22(6):443–446, 1996. https://doi.org/10.1016/0305-4179(96)00038-1.

    Article  CAS  PubMed  Google Scholar 

  9. Cochran, A. L., and Y. Gao. A model and simulation of uterine contractions. Math Mech Solids. 20(5):540–564, 2015. https://doi.org/10.1177/1081286513507940.

    Article  Google Scholar 

  10. Davidson, C. J., L. R. Ganion, G. M. Gehlsen, B. Verhoestra, J. E. Roepke, and T. L. Sevier. Rat tendon morphologic and functional changes resulting from soft tissue mobilization. Med Sci Sports Exerc. 29(3):313–319, 1997. https://doi.org/10.1097/00005768-199703000-00005.

    Article  CAS  PubMed  Google Scholar 

  11. Giacalone, P. L., J. P. Daures, J. Vignal, C. Herisson, B. Hedon, and F. Laffargue. Pfannenstiel versus maylard incision for cesarean delivery: a randomized controlled trial. Obstet Gynecol. 99(5):745–750, 2002. https://doi.org/10.1016/s0029-7844(02)01957-9.

    Article  PubMed  Google Scholar 

  12. Goeckeler, Z. M., and R. B. Wysolmerski. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol. 130(3):613–627, 1995. https://doi.org/10.1083/jcb.130.3.613.

    Article  CAS  PubMed  Google Scholar 

  13. Gonser, M., I. Schmeil, A. Klee, and C. Zumdick. Can third-trimester assessment of uterine scar in women with prior Cesarean section predict uterine rupture? Ultrasound Obstet Gynecol. 48(4):537–538, 2016. https://doi.org/10.1002/uog.15999.

    Article  CAS  PubMed  Google Scholar 

  14. Hicklin, K. T., J. S. Ivy, J. R. Wilson, F. Cobb Payton, M. Viswanathan, and E. R. Myers. Simulation model of the relationship between cesarean section rates and labor duration. Health Care Manag Sci. 22(4):635–657, 2019. https://doi.org/10.1007/s10729-018-9449-3.

    Article  PubMed  Google Scholar 

  15. Jakeman, A. R. Maternal positioning in the second stage of labor and incidence of spontaneous perineal trauma: a systematic review with meta-analysis of randomized controlled trials. [Internet]. 2016.

  16. Kiserud, T., G. Piaggio, and G. Carroli. The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. 2017. https://doi.org/10.1371/journal.pmed.1002220.

    Article  Google Scholar 

  17. Landon, M. B., C. Y. Spong, and E. Thom. Risk of uterine rupture with a trial of labor in women with multiple and single prior cesarean delivery. Obstet Gynecol. 108(1):12–20, 2006. https://doi.org/10.1097/01.AOG.0000224694.32531.f3.

    Article  PubMed  Google Scholar 

  18. Lindgren, L., and D. Holmlund. Friction between the fetal head and uterine wall during normal labor and lower uterine spasm. Am J Obstet Gynecol. 103(7):939–941, 1969. https://doi.org/10.1016/S0002-9378(16)34442-8.

    Article  CAS  PubMed  Google Scholar 

  19. Mathai, M., and H. Gj. Abdominal surgical incisions for caesarean section (Review). Cochrane Libr. 2:28, 2009.

    Google Scholar 

  20. Naji, O., A. Daemen, and A. Smith. Changes in Cesarean section scar dimensions during pregnancy: a prospective longitudinal study. Ultrasound Obstet Gynecol. 41(5):556–562, 2013. https://doi.org/10.1002/uog.12334.

    Article  CAS  PubMed  Google Scholar 

  21. Naji, O., L. Wynants, and A. Smith. Predicting successful vaginal birth after Cesarean section using a model based on Cesarean scar features examined by transvaginal sonography. Ultrasound Obstet Gynecol. 41(6):672–678, 2013. https://doi.org/10.1002/uog.12423.

    Article  CAS  PubMed  Google Scholar 

  22. Molina, E. O., B. D. Noval, J. R. Suárez, R. H. Pailos, F. G. Sánchez, and J. G. González. Maylard’s incision: how to make an easy incision for complex pelvic abdominal surgery. Int J Gynecol Cancer. 30(1):154–155, 2020. https://doi.org/10.1136/ijgc-2019-000876.

    Article  Google Scholar 

  23. Parente, M. P., R. M. N. Jorge, T. Mascarenhas, A. A. Fernandes, and A. L. Silva-Filho. Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol. 203(3):217.e1–217.e6, 2010. https://doi.org/10.1016/j.ajog.2010.03.038.

    Article  Google Scholar 

  24. Pasquo, E., A. J. O. Kiener, and A. DallAsta. Evaluation of the uterine scar stiffness in women with previous Cesarean section by ultrasound elastography: a cohort study. Clin Imaging. 64:53–56, 2020. https://doi.org/10.1016/j.clinimag.2020.03.006.

    Article  PubMed  Google Scholar 

  25. Roeder, H. A., S. F. Cramer, and P. C. Leppert. A look at uterine wound healing through a histopathological study of uterine scars. Reprod Sci. 19(5):463–473, 2012. https://doi.org/10.1177/1933719111426603.

    Article  PubMed  Google Scholar 

  26. Rusavy, Z., E. Francova, L. Paymova, K. M. Ismail, and V. Kalis. Timing of cesarean and its impact on labor duration and genital tract trauma at the first subsequent vaginal birth: a retrospective cohort study. BMC Pregnancy Childbirth. 19(1):1–7, 2019. https://doi.org/10.1186/s12884-019-2359-7.

    Article  Google Scholar 

  27. Seinera, P., P. Gaglioti, E. Volpi, M. A. Cau, and T. Todros. Ultrasound evaluation of uterine wound healing following laparoscopic myomectomy: preliminary results. Hum Reprod. 14(10):2460–2463, 1999. https://doi.org/10.1093/humrep/14.10.2460.

    Article  CAS  PubMed  Google Scholar 

  28. Sharifimajd, B., J. Ölvander, and J. Stålhand. Identification of the mechanical parameters for the human uterus in vivo using intrauterine pressure measurements. Int j numer method biomed eng. 33(1):1–11, 2017. https://doi.org/10.1002/cnm.2778.

    Article  Google Scholar 

  29. Sharifimajd, B., and J. Stålhand. A continuum model for excitation-contraction of smooth muscle under finite deformations. J Theor Biol. 355:1–9, 2014. https://doi.org/10.1016/j.jtbi.2014.03.016.

    Article  PubMed  Google Scholar 

  30. Sharifimajd, B., C. J. Thore, and J. Stålhand. Simulating uterine contraction by using an electro-chemo-mechanical model. Biomech Model Mechanobiol. 15(3):497–510, 2016. https://doi.org/10.1007/s10237-015-0703-z.

    Article  PubMed  Google Scholar 

  31. Sholapurkar, S. L. Etiology of Cesarean Uterine Scar Defect (Niche): detailed Critical Analysis of Hypotheses and Prevention Strategies and Peritoneal Closure Debate. J Clin Med Res. 10(3):166–173, 2018. https://doi.org/10.14740/jocmr3271w.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stålhand, J., A. Klarbring, and G. A. Holzapfel. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Prog Biophys Mol Biol. 96(1–3):465–481, 2008. https://doi.org/10.1016/j.pbiomolbio.2007.07.025.

    Article  CAS  PubMed  Google Scholar 

  33. Tanos, V., and Z. A. Toney. Uterine scar rupture - Prediction, prevention, diagnosis, and management. Best Pract Res Clin Obstet Gynaecol. 59:115–131, 2019. https://doi.org/10.1016/j.bpobgyn.2019.01.009.

    Article  PubMed  Google Scholar 

  34. Taylor, L. K., J. M. Simpson, C. L. Roberts, E. C. Olive, and D. J. Henderson-Smart. Risk of complications in a second pregnancy following caesarean section in the first pregnancy: a population-based study. Med J Aust. 183(10):515–519, 2005. https://doi.org/10.5694/j.1326-5377.2005.tb07152.x.

    Article  PubMed  Google Scholar 

  35. Vila Pouca, M. C. P., J. P. S. Ferreira, D. A. Oliveira, M. P. L. Parente, M. T. Mascarenhas, and R. M. Natal Jorge. Simulation of the uterine contractions and foetus expulsion using a chemo-mechanical constitutive model. Biomech Model Mechanobiol. 18(3):829–843, 2019. https://doi.org/10.1007/s10237-019-01117-5.

    Article  CAS  PubMed  Google Scholar 

  36. Weiss, S., T. Jaermann, and P. Schmid. Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec - Part A Discov Mol Cell Evol Biol. 288(1):84–90, 2006. https://doi.org/10.1002/ar.a.20274.

    Article  Google Scholar 

  37. Wu, C., X. Chen, Z. Mei, J. Zhou, L. Wu, W. Chiu, and X. Xiao. A preliminary study of uterine scar tissue following cesarean section. J Perinat Med. 46(4):379–386, 2018. https://doi.org/10.1515/jpm-2016-0347.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, Y., Y. Kataria, Z. Wang, W. K. Ming, and C. Ellervik. Factors associated with successful vaginal birth after a cesarean section: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 19(1):1–12, 2019. https://doi.org/10.1186/s12884-019-2517-y.

    Article  Google Scholar 

  39. Wyckoff, E. T., G. M. Cua, D. J. Gibson, and R. S. Egerman. Efficacy of the NICHD vaginal birth after cesarean delivery calculator: a single center experience. J Matern Neonatal Med. 33(4):553–557, 2020. https://doi.org/10.1080/14767058.2018.1497597.

    Article  Google Scholar 

  40. Yang, L., T. M. Witten, and R. M. Pidaparti. A biomechanical model of wound contraction and scar formation. J Theor Biol. 332:228–248, 2013. https://doi.org/10.1016/j.jtbi.2013.03.013.

    Article  PubMed  Google Scholar 

  41. Yochum, M., J. Laforêt, and C. Marque. An electro-mechanical multiscale model of uterine pregnancy contraction. Comput Biol Med. 77:182–194, 2016. https://doi.org/10.1016/j.compbiomed.2016.08.001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors truly acknowledge the support from the Portuguese Foundation for Science and Technology (FCT) under Grant 2020.05400.BD and the Junior Researcher Contract 2020.01522.CEECIND. The support from the Associated Laboratory for Energy and Aeronautics (LAETA), trough project UIDB/50022/2020, and by the research project NORTE-01-0145-FEDER-030062 (SIM4SafeBirth) financed by NORTE2020, through FEDER are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Fidalgo.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidalgo, D.S., Pouca, M.C.P.V., Oliveira, D.A. et al. Mechanical Effects of a Maylard Scar During a Vaginal Birth After a Previous Caesarean. Ann Biomed Eng 49, 3593–3608 (2021). https://doi.org/10.1007/s10439-021-02805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02805-z

Keywords