[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Decrease in extracellular collagen crosslinking after NMR magnetic field application in skin fibroblasts

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Although biological effects of electromagnetic fields were investigated intensively, there is still no agreement on the significance of their effects. The underlying mechanisms and therapeutic importance are still mostly unknown too. In this study, primary cultures of human dermal fibroblasts were exposed to magnetic field at nuclear magnetic resonance (NMR) conditions for in total 5 days and 4 h/day. Among the investigated parameters were: cell proliferation rate, cell morphology, total protein concentration as well as content of skin-specific collagen types I, III, IV. NMR exposure induced distinct changes both in cellular and extracellular components. The extracellular matrix (ECM) of NMR-exposed cells had less cross-linked collagen. In particular, the increase of collagen of the soluble fraction was at 17.2 ± 2.9% for type I, 27.0 ± 1.86% for type III, 17.3 ± 1.46% for type IV (N = 6). In the absence of resonance frequency, the effects of magnetic field on ECM were less profound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aaron RK, Ciombor DM (1996) Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J Orthop Res 14(4):582–589

    Article  Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Raff M (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  3. Bailey AJ, Lister D (1968) Thermally labile cross-links in native collagen. Nature 220(164):280–281

    Article  Google Scholar 

  4. Barker A, Cain M (1985) The claimed vasodilatory effect of a commercial permanent magnet foil; results of a double blind trial. Clin Phys Physiol Meas 6(3):261–263

    Article  Google Scholar 

  5. Beall PT, Hazlewood CF, Rao PN (1976) Nuclear magnetic resonance patterns of intracellular water as a function of HeLa cell cycle. Science 192(4242):904–907

    Article  Google Scholar 

  6. Boudreau N, Bissell M (1998) Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol 10(5):640–646

    Article  Google Scholar 

  7. Cho MR, Thatte HS, Lee RC, Golan DE (1996) Reorganization of microfilament structure induced by ac electric fields. FASEB J 10(13):1552–1558

    Google Scholar 

  8. Cruess RL, Kan K, Bassett CA (1983) The effect of pulsing electromagnetic fields on bone metabolism in experimental disuse osteoporosis. Clin Orthop Relat Res 173:245–250

    Google Scholar 

  9. De Haas WG, Lazarovici MA, Morrison DM (1979) The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius. Clin Orthop Relat Res 145:245–251

    Google Scholar 

  10. Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748

    Article  Google Scholar 

  11. Fini M, Giavaresi G, Giardino R, Cavani F, Cadossi R (2006) Histomorphometric and mechanical analysis of the hydroxyapatite–bone interface after electromagnetic stimulation: an experimental study in rabbits. J Bone Joint Surg Br 88(1):123–128

    Article  Google Scholar 

  12. Foley-Nolan D (1992) Pulsed high frequency (27 MHz) electromagnetic therapy for persistent neck pain: a double blind, placebo-controlled study of 20 patients. Orthopedics 13(4):445–451

    Google Scholar 

  13. Hulme J, Robinson V, DeBie R, Wells G, Judd M, Tugwell P (2002) Electromagnetic fields for the treatment of osteoarthritis. Cochrane Database Syst Rev 1:CD003523

    Google Scholar 

  14. Ieran M, Zaffuto S, Bagnacani M, Annovi M, Moratti A, Cadossi R (1990) Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study. J Orthop Res 8(2):276–282

    Article  Google Scholar 

  15. Ijiri K, Matsunaga S, Fukuyama K, Maeda S, Sakou T, Kitano M, Senba I (1996) The effect of pulsing electromagnetic field on bone ingrowth into a porous coated implant. Anticancer Res 16(5A):2853–2856

    Google Scholar 

  16. Ito H, Bassett CA (1983) Effect of weak, pulsing electromagnetic fields on neural regeneration in the rat. Clin Orthop Relat Res 181:283–290

    Google Scholar 

  17. Kadler K (1995) Extracellular matrix 1: fibril-forming collagens. Protein Profile 2(5):491–619

    Google Scholar 

  18. Kahari VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6(5):199–213

    Article  Google Scholar 

  19. Liu H, Lees P, Abbott J, Bee J (1996) Pulsed electromagnetic fields preserve proteoglycan composition of extracellular matrix in embryonic chick sternal cartilage. Biochim Biophys Acta 1336(2):303–314

    Google Scholar 

  20. Lodish H, Berk A, Zipursky S, Matsudaira P, Baltimore D, Darnell J (2000) Integrating cells into tissues. In: Anonymous molecular cell biology. WH Freeman & Co., New York, pp 968–1002

  21. MacGinitie LA, Gluzband YA, Grodzinsky AJ (1994) Electric field stimulation can increase protein synthesis in articular cartilage explants. J Orthop Res 12(2):151–160

    Article  Google Scholar 

  22. Macklis RM (1993) Magnetic healing, quackery, and the debate about the health effects of electromagnetic fields. Ann Intern Med 118(5):376–383

    Google Scholar 

  23. Mourino MR (1991) From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine. Radiology 180(3):593–612

    Google Scholar 

  24. Murray M, Pizzorno J (1998) Encyclopedia of natural medicine. Prima Publishing, Rocklin

    Google Scholar 

  25. Nakagawa K (1974) Clinical application of magnetic field. J Soc Non-trad Technol 66:6–17

    Google Scholar 

  26. Pischinger A (1975) Matrix and matrix regulation. Haug International, Brussels

    Google Scholar 

  27. Porter M (1997) Magnetic therapy. Equine Vet Data 17(7):371

    Google Scholar 

  28. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA (1979) The biosynthesis of collagen and its disorders (second of two parts). N Engl J Med 301(2):77–85

    Article  Google Scholar 

  29. Robins SP, Bailey AJ (1977) The chemistry of the collagen cross-links. Characterization of the products of reduction of skin, tendon and bone with sodium cyanoborohydride. Biochem J 163(2):339–346

    Google Scholar 

  30. Rodemann HP, Bayreuther K, Pfleiderer G (1989) The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields. Exp Cell Res 182(2):610–621

    Article  Google Scholar 

  31. Rubin CT, McLeod KJ, Lanyon LE (1989) Prevention of osteoporosis by pulsed electromagnetic fields. J Bone Joint Surg Am 71(3):411–417

    Google Scholar 

  32. Shimizu T, Zerwekh JE, Videman T, Gill K, Mooney V, Holmes RE, Hagler HK (1988) Bone ingrowth into porous calcium phosphate ceramics: influence of pulsing electromagnetic field. J Orthop Res 6(2):248–258

    Article  Google Scholar 

  33. Stick C (1991) Do strong magnetic fields in NMR tomography modify tissue perfusion. Nuklearmedizin 154:326–332

    Google Scholar 

  34. Trock D, Bollet A, Markill R (1993) A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis. J Rheumatol 20(3):456–460

    Google Scholar 

  35. Trock D, Bollet A, Markill R (1994) The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials. J Rheumatol 21(10):1903–1911

    Google Scholar 

  36. Verzar F (1964) Aging of the collagen fiber. Int Rev Connect Tissue Res 2:243–300

    Google Scholar 

  37. Yamauchi M, Woodley DT, Mechanic GL (1988) Aging and cross-linking of skin collagen. Biochem Biophys Res Commun 152(2):898–903

    Article  Google Scholar 

  38. Yonemori K, Matsunaga S, Ishidou Y, Maeda S, Yoshida H (1996) Early effects of electrical stimulation on osteogenesis. Bone 19(2):173–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Digel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digel, I., Kurulgan, E., Linder, P. et al. Decrease in extracellular collagen crosslinking after NMR magnetic field application in skin fibroblasts. Med Bio Eng Comput 45, 91–97 (2007). https://doi.org/10.1007/s11517-006-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0144-z

Keywords

Navigation