[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A 2D coupled hydro-thermal model for the combined finite-discrete element method

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Based on the combined finite-discrete element method (FDEM), a two-dimensional coupled hydro-thermal model is proposed. This model can simulate fluid flow and heat transfer in rock masses with arbitrary complex fracture networks. The model consists of three parts: a heat conduction model of the rock matrix, a heat-transfer model of the fluid in the fracture (including the heat conduction and convection of fluid), and a heat exchange model between the fluid and rock at the fracture surface. Three examples with analytical solutions are given to verify the correctness of the coupled model. Finally, the coupled model is applied to hydro-thermal coupling simulations of a rock mass with a fracture network. The temperature field evolution, the effect of thermal conductivity of the rock matrix thermal conductivity and the fracture aperture on the outlet temperature are studied. The coupled model presented in this paper will enable the application of FDEM to study rock rupture driven by the effect of hydro-thermo-mechanical coupling in geomaterials such as in geothermal systems, petroleum engineering, environmental engineering and nuclear waste geological storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\(q_{i}\) :

Heat flow rate in the i direction

\(k_{ij}\) :

Thermal conductivity tensor of rock matrix

\(T\) :

Temperature

\(M\) :

Mass

\(Q_{\text{net}}\) :

Net heat flowing into mass \(M\) per unit time

\(t\) :

Time

\(C_{\text{s}}\) :

Specific heat of rock matrix

\(A\) :

Area of a triangular element

\(n\) :

Outer normal vector

\(\bar{T}^{m}\) :

Average temperature of edge m

\(\Delta x_{j}^{m}\) :

Difference between the coordinate components of the two vertices at edge m

\(\in_{ij}\) :

Two-dimensional permutation tensor

\(q_{x}\) :

Heat flow rate along the x direction

\(q_{y}\) :

Heat flow rate along the y direction

\(n_{i}^{(n)}\) :

Outer normal unit vector of the edge opposite to node n

\(L^{(n)}\) :

Length of the edge opposite to node n

Q Δ123 :

Heat flow flowing into node 1 from triangular element Δ123

\(Q_{\text{s}}\) :

Total heat flow into node 1 per unit time

\(T_{t}^{\text{s}}\) :

Nodal temperature at \(t\)

\(T_{t + \Delta t}^{\text{s}}\) :

Nodal temperature at \(t + \Delta t\) and \(t\)

\(\rho_{\text{s}}\) :

Mass density of rock matrix

\(V_{\text{s}}\) :

Rock matrix volume of node 1

\(\Delta x\) :

Size of the smallest element

\(h\) :

Convective heat-transfer coefficient

\(\kappa\) :

Thermal diffusion coefficient (\(k/\rho C_{\text{p}}\) when \(k_{x} = k_{y}\))

\(\Delta T\) :

Temperature difference between node 1 and node 2

\(T_{ 1}\) :

Temperature at node 1

\(T_{2}\) :

Temperature at node 2

\(k_{\text{f}}\) :

Thermal conductivity of fluid

\(Q_{{{\text{f}}1}}\) :

Total heat flow rate due to heat conduction

\(q_{\text{f}}\) :

Fluid flow rate between node 1 and node 2

\(p_{1}\) :

Pressure at node 1

\(p_{2}\) :

Pressure at node 2

\(\Delta p\) :

Pressure difference between node 1 and node 2

\(\mu\) :

Dynamic viscosity of fluid

\(a\) :

Aperture of fractures

\(Q_{\text{f2}}\) :

Total heat flow rate of node 1 due to heat convection

\(T_{t}^{\text{f}}\) :

Temperature of node 1 at \(t\)

\(T_{t + \Delta t}^{\text{f}}\) :

Temperature of node 1 at \(t + \Delta t\)

\(C_{\text{f}}\) :

Specific heat of fluid

\(\rho_{\text{f}}\) :

Mass density of fluid

\(Q_{\text{f}}\) :

Total heat flow rate of node 1

Δt :

Time step

\(V\) :

Half of the volume of all the broken joint elements that connect to node 1

\(T_{\text{s}}^{ + }\), \(T_{\text{s}}^{ - }\) :

Temperature of rock matrix at both sides of a fracture

\(T_{\text{f}}\) :

Temperature of fluid in a fracture

\(L\) :

Fracture length

\(Q_{\text{e}}\) :

Heat exchange between fluid and rock matrix per unit time

\(T_{\text{L}}\) :

Temperature of the left boundary

\(T_{\text{R}}\) :

Temperature of the right boundary

\(\hat{T}\) :

\((T - T_{\text{L}} )/T_{\text{L}}\)

\(P_{\text{e}}\) :

Peclet number

\(v_{\text{f}}\) :

Flow velocity of fluid

\(k_{\text{s}}\) :

Thermal conductivity of rock matrix

\(T_{{{\text{s}}0}}\) :

Initial temperature of rock matrix

\(T_{{{\text{f}}0}}\) :

Fluid temperature at the left boundary

\(erfc\) :

Complementary error function

\(\mu\) :

Dynamic viscosity of fluid

References

  1. Abdallah G, Thoraval A, Sfeir A, Piguet J-P (1995) Thermal convection of fluid in fractured media. In: International journal of rock mechanics and mining sciences & geomechanics abstracts, vol 5. Elsevier, pp 481–490

  2. Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. In: International journal of rock mechanics and mining sciences & geomechanics Abstracts, vol 3. Elsevier, pp 121–140

  3. Chen B, Song E, Cheng X (2014) A numerical method for discrete fracture network model for flow and heat transfer in two-dimensional fractured rocks. Chin J Rock Mech Eng 33(1):43–51

    Google Scholar 

  4. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  5. Cui W, Gawecka KA, Potts DM, Taborda DMG, Zdravković L (2016) Numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering. Geomech Energy Environ 6:22–34. https://doi.org/10.1016/j.gete.2016.03.002

    Article  Google Scholar 

  6. Hu J, Su Z, Wu N-Y, H-z Zhai, Y-c Zeng (2014) Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in enhanced geothermal system. Progress Geophys 29(3):1391–1398

    Google Scholar 

  7. Hudson J, Stephansson O, Andersson J, Tsang C-F, Jing L (2001) Coupled T–H–M issues relating to radioactive waste repository design and performance. Int J Rock Mech Min Sci 38(1):143–161

    Article  Google Scholar 

  8. Inc ICG (2005) Code PFC. User’s Guide, Minnesota, USA. 2005

  9. Itasca (2005) Consulting Group Inc, Code 3DEC. User’s Guide, Minnesota, USA

  10. Itasca Consulting Group Inc (2005) Code UDEC. User’s Guide, Minnesota, USA

  11. Itasca Consulting Group Inc (2005) Code FLAC. User’s Guide, Minnesota, USA

  12. Jiang F, Chen J, Huang W, Luo L (2014) A three-dimensional transient model for EGS subsurface thermo-hydraulic process. Energy 72:300–310. https://doi.org/10.1016/j.energy.2014.05.038

    Article  Google Scholar 

  13. Jing L, Tsang C-F, Stephansson O (1995) DECOVALEX—an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. In: International journal of rock mechanics and mining sciences & geomechanics abstracts, vol 5. Elsevier, pp 389–398

  14. Latham J-P, Xiang J, Belayneh M, Nick HM, Tsang C-F, Blunt MJ (2013) Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int J Rock Mech Min Sci 57:100–112. https://doi.org/10.1016/j.ijrmms.2012.08.002

    Article  Google Scholar 

  15. Lei Z, Rougier E, Knight EE, Munjiza A (2014) A framework for grand scale parallelization of the combined finite discrete element method in 2d. Comput Part Mech 1(3):307–319. https://doi.org/10.1007/s40571-014-0026-3

    Article  Google Scholar 

  16. Lei Z, Rougier E, Knight EE, Munjiza A (2015) FDEM Simulation on Fracture Coalescence in Brittle Materials. In: Paper presented at the 49th US Rock Mechanics/Geomechanics Symposium

  17. Lei Q, Latham J-P, Xiang J, Tsang C-F (2015) Polyaxial stress-induced variable aperture model for persistent 3D fracture networks. Geomech Energy Environ 1:34–47. https://doi.org/10.1016/j.gete.2015.03.003

    Article  Google Scholar 

  18. Lei Q, Latham J-P, Xiang J (2016) Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks. Rock Mech Rock Eng 49(12):4799–4816. https://doi.org/10.1007/s00603-016-1064-3

    Article  Google Scholar 

  19. Lei Z, Rougier E, Knight EE, Frash L, Carey JW, Viswanathan H (2016) A non-locking composite tetrahedron element for the combined finite discrete element method. Eng Comput 33(7):1929–1956. https://doi.org/10.1108/ec-09-2015-0268

    Article  Google Scholar 

  20. Lei Z, Rougier E, Knight EE, Munjiza A, Viswanathan H (2016) A generalized anisotropic deformation formulation for geomaterials. Comput Part Mech 3(2):215–228. https://doi.org/10.1007/s40571-015-0079-y

    Article  Google Scholar 

  21. Lisjak A, Grasselli G, Vietor T (2014) Continuum–discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int J Rock Mech Min Sci 65:96–115. https://doi.org/10.1016/j.ijrmms.2013.10.006

    Article  Google Scholar 

  22. Lisjak A, Tatone BSA, Grasselli G, Vietor T (2014) Numerical modelling of the anisotropic mechanical behaviour of opalinus clay at the laboratory-scale using fem/DEM. Rock Mech Rock Eng 47(1):187–206. https://doi.org/10.1007/s00603-012-0354-7

    Article  Google Scholar 

  23. Lisjak A, Tatone BSA, Mahabadi OK, Grasselli G, Marschall P, Lanyon GW, Rdl Vaissière, Shao H, Leung H, Nussbaum C (2016) Hybrid finite-discrete element simulation of the EDZ formation and mechanical sealing process around a microtunnel in Opalinus Clay. Rock Mech Rock Eng 49(5):1849–1873. https://doi.org/10.1007/s00603-015-0847-2

    Article  Google Scholar 

  24. Lisjak A, Kaifosh P, He L, Tatone BSA, Mahabadi OK, Grasselli G (2017) A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Comput Geotech 81:1–18. https://doi.org/10.1016/j.compgeo.2016.07.009

    Article  Google Scholar 

  25. Mahabadi O, Kaifosh P, Marschall P, Vietor T (2014) Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples. J Rock Mech Geotech Eng 6(6):591–606. https://doi.org/10.1016/j.jrmge.2014.10.005

    Article  Google Scholar 

  26. Munjiza A (2004) The combined finite-discrete element method. Wiley, London

    Book  MATH  Google Scholar 

  27. Munjiza A (2011) Computational mechanics of discontinua. Wiley, Hoboken

    Book  MATH  Google Scholar 

  28. Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174. https://doi.org/10.1108/02644409510799532

    Article  MATH  Google Scholar 

  29. Munjiza A, Latham J, Andrews K (2000) Detonation gas model for combined finite-discrete element simulation of fracture and fragmentation. Int J Numer Methods Eng 49(12):1495–1520

    Article  MATH  Google Scholar 

  30. Perrochet P, Bérod D (1993) Stability of the standard Crank-Nicolson-Galerkin Scheme applied to the diffusion-convection equation: some new insights. Water Resour Res 29(9):3291–3297

    Article  Google Scholar 

  31. Priest SD (2012) Discontinuity analysis for rock engineering. Springer, Berlin

    Google Scholar 

  32. Pruess K (1983) Heat transfer in fractured geothermal reservoirs with boiling. Water Resour Res 19(1):201–208

    Article  Google Scholar 

  33. Rougier E, Knight EE, Broome ST, Sussman AJ, Munjiza A (2014) Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test. Int J Rock Mech Min Sci 70:101–108. https://doi.org/10.1016/j.ijrmms.2014.03.011

    Article  Google Scholar 

  34. Rutqvist J (2011) Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci 37(6):739–750. https://doi.org/10.1016/j.cageo.2010.08.006

    Article  Google Scholar 

  35. Senseney CT, Duan Z, Zhang B, Regueiro RA (2017) Combined spheropolyhedral discrete element (DE)–finite element (FE) computational modeling of vertical plate loading on cohesionless soil. Acta Geotech 12(3):593–603. https://doi.org/10.1007/s11440-016-0519-8

    Article  Google Scholar 

  36. Shaik AR, Rahman SS, Tran NH, Tran T (2011) Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system. Appl Therm Eng 31(10):1600–1606. https://doi.org/10.1016/j.applthermaleng.2011.01.038

    Article  Google Scholar 

  37. Snow DT (1965) A parallel plate model of fractured permeable media. Ph.D. Thesis, Univ of California

  38. Sun Z-x, Zhang X, Xu Y, Yao J, Wang H-x, Lv S, Sun Z-l, Huang Y, Cai M-y, Huang X (2017) Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy 120:20–33. https://doi.org/10.1016/j.energy.2016.10.046

    Article  Google Scholar 

  39. Tomac I, Gutierrez M (2015) Formulation and implementation of coupled forced heat convection and heat conduction in DEM. Acta Geotech 10(4):421–433. https://doi.org/10.1007/s11440-015-0400-1

    Article  Google Scholar 

  40. Tsang C-F, Stephansson O, Jing L, Kautsky F (2009) DECOVALEX Project: from 1992 to 2007. Environ Geol 57(6):1221–1237

    Article  Google Scholar 

  41. Xu T, Zhang Y, Yu Z, Hu Z, Guo L (2015) Laboratory study of hydraulic fracturing on hot dry rock. Sci Technol Rev 33(19):35–39

    Google Scholar 

  42. Xu C, Dowd PA, Tian ZF (2015) A simplified coupled hydro-thermal model for enhanced geothermal systems. Appl Energy 140:135–145. https://doi.org/10.1016/j.apenergy.2014.11.050

    Article  Google Scholar 

  43. Yan C, Zheng H (2016) A two-dimensional coupled hydro-mechanical finite-discrete model considering porous media flow for simulating hydraulic fracturing. Int J Rock Mech Min Sci 88:115–128. https://doi.org/10.1016/j.ijrmms.2016.07.019

    Article  Google Scholar 

  44. Yan C, Zheng H (2017) A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock. Int J Rock Mech Min Sci 91:170–178. https://doi.org/10.1016/j.ijrmms.2016.11.023

    Article  Google Scholar 

  45. Yan C, Zheng H (2017) Three-dimensional hydromechanical model of hydraulic fracturing with arbitrarily discrete fracture networks using finite-discrete element method. Int J Geomech 17(6):04016133

    Article  Google Scholar 

  46. Yan C, Zheng H (2017) FDEM-flow3D: a 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing. Comput Geotech 81:212–228. https://doi.org/10.1016/j.compgeo.2016.08.014

    Article  Google Scholar 

  47. Yan C, Zheng H, Sun G, Ge X (2016) Combined finite-discrete element method for simulation of hydraulic fracturing. Rock Mech Rock Eng 49(4):1389–1410. https://doi.org/10.1007/s00603-015-0816-9

    Article  Google Scholar 

  48. Zhao J (1993) Convective heat transfer and water flow in rough granite fractures. In: ISRM international symposium-EUROCK 93, international society for rock mechanics

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under the Grant Number 11602006; the Beijing Natural Science Foundation under the Grant Number 1174012; the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan); the Chaoyang District Postdoctoral Science Foundation funded project under the Grant Number 2016ZZ-01-08; and the National Natural Science Foundation of China under Grant Number 41731284, 11672360 and 51479191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Yong Jiao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Jiao, YY. & Yang, S. A 2D coupled hydro-thermal model for the combined finite-discrete element method. Acta Geotech. 14, 403–416 (2019). https://doi.org/10.1007/s11440-018-0653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0653-6

Keywords

Navigation