[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Hydraulic fracturing is widely used in the exploitation of unconventional gas (such as shale gas).Thus, the study of hydraulic fracturing is of particular importance for petroleum industry. The combined finite-discrete element method (FDEM) proposed by Munjiza is an innovative numerical technique to capture progressive damage and failure processes in rock. However, it cannot model the fracturing process of rock driven by hydraulic pressure. In this study, we present a coupled hydro-mechanical model based on FDEM for the simulation of hydraulic fracturing in complex fracture geometries, where an algorithm for updating hydraulic fracture network is proposed. The algorithm can carry out connectivity searches for arbitrarily complex fracture networks. Then, we develop a new combined finite-discrete element method numerical code (Y-flow) for the simulation of hydraulic fracturing. Finally, several verification examples are given, and the simulation results agree well with the analytical or experimental results, indicating that the newly developed numerical code can capture hydraulic fracturing process correctly and effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

M :

Lumped mass diagonal matrices

C :

Damping diagonal matrices

F :

Nodal force vector

X :

Vector of nodal coordinates

Δp :

Pressure differential between two adjacent nodes

p 1 :

Pressure of Node 1

p 2 :

Pressure of Node 2

ρ w :

Mass density of fluid

g :

Gravitational acceleration

y 1 :

Vertical coordinate of Node 1

y 2 :

Vertical coordinate of Node 2

q :

Flow rate

μ :

Dynamic coefficient of viscosity

a :

Average aperture of crack element

a 0 :

Initial value of aperture

a res :

Minimum value of aperture

a max :

Maximum value of aperture

u n :

Normal displacement of crack element

L :

Length of crack element

f s :

Function of saturation

f n :

Total fluid pressure on edge of triangular element

s :

Saturation of current time step

s 0 :

Saturation of previous time step

Q :

Total flow rate

q 21 :

Flow rate from Node 1 to 2

q 23 :

Flow rate from Node 3 to 2

q 24 :

Flow rate from Node 4 to 2

p :

Pressure of the node at the current time step

p 0 :

Pressure of the node at the previous time step

K w :

Bulk modulus of the fluid

k i :

Permeability factor of the ith crack element

Δt :

Time step

Δt f :

Critical time step

V :

Volume of the node at the current time step

V 0 :

Volume of the node at the previous time step

ΔV :

Volume change

V m :

Average volume

V 2 :

Volume of Node 2

V j21 :

Volume of crack element j21

V j23 :

Volume of crack element j23

V j24 :

Volume of crack element j24

h :

Height of free surface

h 1 :

Water level on the left

h 2 :

Water level on the right

x :

X-axis coordinate component

B :

Width of the dam

P :

Hydraulic pressure at the location with a distance to the impermeable boundary of (l − x)

P 0 :

Hydraulic at the left end

T :

Non-dimensional time

t :

Time

l :

Length of single crack

ζ :

\(\frac{l - x}{l}\)

References

  • Al-Busaidi A, Hazzard JF, Young RP (2005) Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J Geoph Res-Solid Earth 110:BO6302

  • Blum P, Mackay R, Riley MS, Knight JL (2005) Performance assessment of a nuclear waste repository: upscaling coupled hydro-mechanical properties for far-field transport analysis. Int J Rock Mech Min Sci 42(5):781–792

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Fan H, Zheng H (2013) MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks. Sci China Technol Sci 52(12):3115–3122

    Article  Google Scholar 

  • Grasselli G, Lisjak A, Mahabadi OK, Tatone BSA (2014) Influence of pre-existing discontinuities and bedding planes on hydraulic fracturing initiation. Euro J Environ Civil Eng 19(5):580–597

    Article  Google Scholar 

  • Han Y, Cundall PA (2011) Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media. Int J Numer Meth Fluids 67(11):1720–1734

    Article  Google Scholar 

  • Han Y, Cundall PA (2013) LBM–DEM modeling of fluid–solid interaction in porous media. Int J Numer Anal Meth Geomech 37(10):1391–1407

    Article  Google Scholar 

  • Harr ME (1962) Groundwater and seepage. McGraw-Hill Book Co., Inc., New York

    Google Scholar 

  • Hudson JA, Stephansson O, Andersson J, Tsang CF, Jing L (2001) Coupled T–H–M issues relating to radioactive waste repository design and performance. Int J Rock Mech Min Sci 38(1):143–161

    Article  Google Scholar 

  • Itasca (2005) UDEC version 4.0 user’s manuals, Itasca Consulting Group Inc, Minnesota, USA

  • Jiao Y-Y, Zhang H-Q, Zhang X-L, Li H-B, Jiang Q-H (2015) A two-dimensional coupled hydromechanical discontinuum model for simulating rock hydraulic fracturing. Int J Numer Anal Meth Geomech 39(5):457–481

    Article  Google Scholar 

  • Jing L, Tsang CF, Stephansson O (1995) DECOVALEX—An international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int J Rock Mech Mining Sci Geomech Abst 32(5):389–398

    Article  Google Scholar 

  • Latham J-P, Xiang J, Belayneh M, Nick HM, Tsang C-F, Blunt MJ (2013) Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int J Rock Mech Min Sci 57:100–112

    Google Scholar 

  • Li LC, Tang CA, Li G, Wang SY, Liang ZZ, Zhang YB (2012) Numerical simulation of 3d hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique. Rock Mech Rock Eng 45(5):801–818

    Google Scholar 

  • Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6(4):301–314

    Article  Google Scholar 

  • Lisjak A, Liu Q, Zhao Q, Mahabadi OK, Grasselli G (2013) Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis. Geophys J Int 195(1):423–443

    Article  Google Scholar 

  • Lisjak A, Tatone BA, Grasselli G, Vietor T (2014) Numerical modelling of the anisotropic mechanical behaviour of opalinus clay at the laboratory-scale using FEM/DEM. Rock Mech Rock Eng 47(1):187–206

    Article  Google Scholar 

  • Mahabadi OK, Grasselli G, Munjiza A (2010) Y-GUI: a graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material heterogeneity. Comput Geosci 36(2):241–252

    Article  Google Scholar 

  • Mahabadi O, Lisjak A, Munjiza A, Grasselli G (2012) Y-Geo: new combined finite-discrete element numerical code for geomechanical applications. Int J Geomech 12(6):676–688

    Article  Google Scholar 

  • Mas Ivars D (2006) Water inflow into excavations in fractured rock—a three-dimensional hydro-mechanical numerical study. Int J Rock Mech Min Sci 43(5):705–725

    Article  Google Scholar 

  • Munjiza A (2004) The combined finite-discrete element method. Wiley, Chichester

    Book  Google Scholar 

  • Munjiza A, Andrews KRF (1998) NBS contact detection algorithm for bodies of similar size. Int J Numer Meth Eng 43(1):131–149

    Article  Google Scholar 

  • Munjiza A, Andrews KRF (2000) Penalty function method for combined finite-discrete element systems comprising large number of separate bodies. Int J Numer Meth Eng 49(11):1377–1396

    Article  Google Scholar 

  • Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174

    Article  Google Scholar 

  • Munjiza A, Knight E, Rougier E (2011) Computational mechanics of discontinua. Wiley

  • Nowak T, Kunz H, Dixon D, Wang W, Görke U-J, Kolditz O (2011) Coupled 3-D thermo-hydro-mechanical analysis of geotechnological in situ tests. Int J Rock Mech Min Sci 48(1):1–15

    Article  Google Scholar 

  • Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci 48(5):712–727

    Article  Google Scholar 

  • Tang CA, Tham LG, Lee PKK, Yang TH, Li LC (2002) Coupled analysis of flow, stress and damage (FSD) in rock failure. Int J Rock Mech Min Sci 39(4):477–489

    Article  Google Scholar 

  • Tatone BSA, Grasselli G (2015) A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations. Int J Rock Mech Min Sci 75:56–72

    Google Scholar 

  • Tsang C-F, Jing L, Stephansson O, Kautsky F (2005) The DECOVALEX III project: a summary of activities and lessons learned. Int J Rock Mech Min Sci 42(5):593–610

    Article  Google Scholar 

  • Wang SY, Sun L, Au ASK, Yang TH, Tang CA (2009) 2D-numerical analysis of hydraulic fracturing in heterogeneous geo-materials. Constr Build Mater 23(6):2196–2206

    Article  Google Scholar 

  • Yang TH, Tham LG, Tang CA, Liang ZZ, Tsui Y (2004) Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks. Rock Mech Rock Eng 37(4):251–275

    Article  Google Scholar 

  • Zheng H, Jiang W (2009) Discontinuous deformation analysis based on complementary theory. Sci China Ser E: Technol Sci 52(9):2547–2554

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China under the Grant number 11202223; and the Natural Basic Research Program of China under the Grant numbers: 2011CB013505 and 2014CB047100. Special thanks to the anonymous reviewer and editor-in-chief who have given their time and expertise to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Zheng, H., Sun, G. et al. Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing. Rock Mech Rock Eng 49, 1389–1410 (2016). https://doi.org/10.1007/s00603-015-0816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0816-9

Keywords

Navigation