Abstract
Many long noncoding RNAs (lncRNAs) have been identified through siRNA-based screening as essential regulators of embryonic stem cell (ESC) pluripotency. However, the biological and molecular functions of most lncRNAs remain unclear. Here, we employed CRISPR/Cas9-mediated knockout technology to explore the functions of 8 lncRNAs previously reported to promote pluripotency in mouse ESCs. Unexpectedly, all of these lncRNAs were dispensable for pluripotency maintenance and proliferation in mouse ESCs when disrupted individually or in combination. Single-cell transcriptomic analysis also showed that the knockout of these lncRNAs has a minimal impact on pluripotency gene expression and cell identity. We further showed that several small hairpin RNAs (shRNAs) previously used to knock down lncRNAs caused the downregulation of pluripotency genes in the corresponding lncRNA-knockout ESCs, indicating that off-target effects likely responsible for the pluripotency defects caused by these shRNAs. Interestingly, linc1343-knockout and linc1343-knockdown ESCs failed to form cystic structures and exhibited high expression of pluripotency genes during embryoid body (EB) differentiation. By reintroducing RNA products generated from the linc1343 locus, we found that two snoRNAs, Snora73a and Snora73b, but not lncRNAs, could rescue pluripotency silencing defects during EB differentiation of linc1343 knockout ESCs. Our results suggest that the 8 previously annotated pluripotency-regulating lncRNAs have no overt functions in conventional ESC culture; however, we identified snoRNA products derived from an annotated lncRNA locus as essential regulators for silencing pluripotency genes.
Similar content being viewed by others
Data availability
The accession numbers of the public and original datasets used in the study are included in Table S8 in Supporting Information. The dataset used in the present study is available in the NCBI GEO repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225240).
References
Allen, R.S., Li, J., Stahle, M.I., Dubroué, A., Gubler, F., and Millar, A.A. (2007). Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104, 16371–16376.
Alvarez-Saavedra, E., and Horvitz, H.R. (2010). Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20, 367–373.
Andergassen, D., and Rinn, J.L. (2022). From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet 23, 229–243.
Atzorn, V., Fragapane, P., and Kiss, T. (2004). U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol Cell Biol 24, 1769–1778.
Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126–140.
Azam, S., Hou, S., Zhu, B., Wang, W., Hao, T., Bu, X., Khan, M., and Lei, H. (2019). Nuclear retention element recruits U1 snRNP components to restrain spliced lncRNAs in the nucleus. RNA Biol 16, 1001–1009.
Baysoy, A., Bai, Z., Satija, R., and Fan, R. (2023). The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol 24, 695–713.
Betschinger, J., Nichols, J., Dietmann, S., Corrin, P.D., Paddison, P.J., and Smith, A. (2013). Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153, 335–347.
Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.
Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H., and Young, R.A. (2008). Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22, 746–755.
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.
Cui, Y., Qi, Y., Ding, L., Ding, S., Han, Z., Wang, Y., and Du, P. (2024). miRNA dosage control in development and human disease. Trends Cell Biol 34, 31–47.
De Los Angeles, A. (2019). The pluripotency continuum and interspecies chimeras. CP Stem Cell Biol 50, e87.
Dhir, A., Dhir, S., Proudfoot, N.J., and Jopling, C.L. (2015). Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 22, 319–327.
Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.
Elling, R., Robinson, E.K., Shapleigh, B., Liapis, S.C., Covarrubias, S., Katzman, S., Groff, A.F., Jiang, Z., Agarwal, S., Motwani, M., et al. (2018). Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep 25, 1511–1524.e6.
Enright, C.A., Maxwell, E.S., Eliceiri, G.L., Sollner-Webb, B. (1996). 5’ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA 2, 1094–1099.
Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
Evers, B., Jastrzebski, K., Heijmans, J.P.M., Grernrum, W., Beijersbergen, R.L., and Bernards, R. (2016). CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34, 631–633.
Flynn, R.A., and Chang, H.Y. (2014). Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14, 752–761.
Furlan, G., Huyghe, A., Combémorel, N., and Lavial, F. (2023). Molecular versatility during pluripotency progression. Nat Commun 14, 68.
Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849.
Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227.
Guttman, M., Donaghey, J., Carey, B.W., Garber, M., Grenier, J.K., Munson, G., Young, G., Lucas, A.B., Ach, R., Bruhn, L., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300.
Hacisuleyman, E., Shukla, C.J., Weiner, C.L., and Rinn, J.L. (2016). Function and evolution of local repeats in the Firre locus. Nat Commun 7, 11021.
Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee. M.J., Wilk. A.J., Darby. C., Zager M. et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29.
Horlbeck, M.A., Liu, S.J., Chang, H.Y., Lim, D.A., and Weissman, J.S. (2020). Fitness effects of CRISPR/Cas9-targeting of long noncoding RNA genes. Nat Biotechnol 38, 573–576.
Housden, B.E., and Perrimon, N. (2016). Comparing CRISPR and RNAi-based screening technologies. Nat Biotechnol 34, 621–623.
Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827–832.
Hu, S., Metcalf, E., Mahat, D.B., Chan, L., Sohal, N., Chakraborty, M., Hamilton, M., Singh, A., Singh, A., Lees, J.A., et al. (2022). Transcription factor antagonism regulates heterogeneity in embryonic stem cell states. Mol Cell 82, 4410–4427.e12.
Jackson, A.L., and Linsley, P.S. (2010). Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9, 57–67.
Kaelin, W.G. (2012). Use and abuse of RNAi to study mammalian gene function. Science 337, 421–422.
Kafri, R., Levy, M., and Pilpel, Y. (2006). The regulatory utilization of genetic redundancy through responsive backup circuits. Proc Natl Acad Sci USA 103, 11653–11658.
Kaji, K., Caballero, I.M., MacLeod, R., Nichols, J., Wilson, V.A., and Hendrich, B. (2006). The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat Cell Biol 8, 285–292.
Keller, G.M. (1995). In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7, 862–869.
Kinoshita, M., Barber, M., Mansfield, W., Cui, Y., Spindlow, D., Stirparo, G.G., Dietmann, S., Nichols, J., and Smith, A. (2021). Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell 28, 453–471.e8.
Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A., and Kirschner, M.W. (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201.
Kung, J.T.Y., Colognori, D., and Lee, J.T. (2013). Long noncoding RNAs: past, present, and future. Genetics 193, 651–669.
Lai. K.M., Gong. G., Atanasio. A., Rojas. J., Quispe. J., Posca. J., White. D., Huang. M., Fedorova. D., Grant. C., et al. (2015). Diverse phenotypes and specific transcription patterns in twenty mouse lines with ablated lincRNAs. PLoS ONE 10, e0125522.
Lee, H., Zhang, Z., and Krause, H.M. (2019). Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners.? Trends Genet 35, 892–902.
Lewandowski, J.P., Dumbovic, G., Watson, A.R., Hwang, T., Jacobs-Palmer, E., Chang, N., Much, C., Turner, K.M., Kirby, C., Rubinstein, N.D., et al. (2020). The Tug1 lncRNA locus is essential for male fertility. Genome Biol 21, 237.
Li, G., Li, X., Zhuang, S., Wang, L., Zhu, Y., Chen, Y., Sun, W., Wu, Z., Zhou, Z., Chen, J., et al. (2022a). Gene editing and its applications in biomedicine. Sci China Life Sci 65, 660–700.
Li, J., Zhu, D., Hu, S., and Nie, Y. (2022b). CRISPR-CasRx knock-in mice for RNA degradation. Sci China Life Sci 65, 2248–2256.
Li, L., and Chang, H.Y. (2014). Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 24, 594–602.
Li, M.A., Amaral, P.P., Cheung, P., Bergmann, J.H., Kinoshita, M., Kalkan, T., Ralser, M., Robson, S., von Meyenn, F., Paramor, M., et al. (2017). A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. eLife 6, e23468.
Li, M.A., and He, L. (2012). microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays 34, 670–680.
Li, S., Edgar, D., Fässler, R., Wadsworth, W., and Yurchenco, P.D. (2003). The role of laminin in embryonic cell polarization and tissue organization. Dev Cell 4, 613–624.
Li, X., Chen, Y., Schéele, S., Arman, E., Haffner-Krausz, R., Ekblom, P., and Lonai, P. (2001). Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J Cell Biol 153, 811–822.
Li, Y.P., Duan, F.F., Zhao, Y.T., Gu, K.L., Liao, L.Q., Su, H.B., Hao, J., Zhang, K., Yang, N., and Wang, Y. (2019). A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nat Commun 10, 1368.
Liu, L., Wang, X., Zhao, W., Li, Q., Li, J., Chen, H., and Shan, G. (2023). Systematic characterization of small RNAs associated with C. elegans Argonautes. Sci China Life Sci 66, 1303–1322.
Liu, S.J., Horlbeck, M.A., Cho, S.W., Birk, H.S., Malatesta, M., He, D., Attenello, F.J., Villalta, J.E., Cho, M.Y., Chen, Y., et al. (2017). CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, eaah7111.
Liu, Y., Cao, Z., Wang, Y., Guo, Y., Xu, P., Yuan, P., Liu, Z., He, Y., and Wei, W. (2018). Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol 36, 1203–1210.
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826.
Martello, G., and Smith, A. (2014). The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30, 647–675.
Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78, 7634–7638.
Mattick, J.S., Amaral, P.P., Carninci, P., Carpenter, S., Chang, H.Y., Chen, L.L., Chen, R., Dean, C., Dinger, M.E., Fitzgerald, K.A., et al. (2023). Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 24, 430–447.
Mohr, S.E., Smith, J.A., Shamu, C.E., Neumüller, R.A., and Perrimon, N. (2014). RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15, 591–600.
Monziani, A., and Ulitsky, I. (2023). Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 39, 908–923.
Murray, P., and Edgar, D. (2000). Regulation of programmed cell death by basement membranes in embryonic development. J Cell Biol 150, 1215–1221.
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Paralkar, V.R., Taborda, C.C., Huang, P., Yao, Y., Kossenkov, A.V., Prasad, R., Luan, J., Davies, J.O.J., Hughes, J.R., Hardison, R.C., et al. (2016). Unlinking an lncRNA from its associated cis element. Mol Cell 62, 104–110.
Pera, M.F., and Tam, P.P.L. (2010). Extrinsic regulation of pluripotent stem cells. Nature 465, 713–720.
Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17, 47–62.
Ren, J., Hai, T., Chen, Y., Sun, K., Han, Z., Wang, J., Li, C., Wang, Q., Wang, L., Zhu, H., et al. (2024). Improve meat production and virus resistance by simultaneously editing multiple genes in livestock using Cas12iMax. Sci China Life Sci 67, 555–564.
Sauvageau, M., Goff, L.A., Lodato, S., Bonev, B., Groff, A.F., Gerhardinger, C., Sanchez-Gomez, D.B., Hacisuleyman, E., Li, E., Spence, M., et al. (2013). Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749.
Schultz, N., Marenstein, D.R., De Angelis, D.A., Wang, W.Q., Nelander, S., Jacobsen, A., Marks, D.S., Massagué, J., and Sander, C. (2011). Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence 2, 3.
Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87.
Sletten, A.C., Davidson, J.W., Yagabasan, B., Moores, S., Schwaiger-Haber, M., Fujiwara, H., Gale, S., Jiang, X., Sidhu, R., Gelman, S.J., et al. (2021). Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun 12, 5214.
Smyth, N., Vatansever, H.S., Murray, P., Meyer, M., Frie, C., Paulsson, M., and Edgar, D. (1999). Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144, 151–160.
Statello, L., Guo, C.J., Chen, L.L., and Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22, 96–118.
Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., Watt, A.T., Freier, S.M., Bennett, C.F., Sharma, A., Bubulya, P.A., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39, 925–938.
Villegas, F., Lehalle, D., Mayer, D., Rittirsch, M., Stadler, M.B., Zinner, M., Olivieri, D., Vabres, P., Duplomb-Jego, L., De Bont, E.S.J.M., et al. (2019). Lysosomal signaling licenses embryonic stem cell differentiation via inactivation of Tfe3. Cell Stem Cell 24, 257–270.e8.
Wagner, A. (1996). Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators. Biol Cybern 74, 557–567.
Wang, J., Wang, W., Ma, F., and Qian, H. (2023a). A hidden translatome in tumors—the coding lncRNAs. Sci China Life Sci 66, 2755–2772.
Wang, X., Lin, D.H., Yan, Y., Wang, A.H., Liao, J., Meng, Q., Yang, W.Q., Zuo, H., Hua, M.M., Zhang, F., et al. (2023b). The PIWI-specific insertion module helps load longer piRNAs for translational activation essential for male fertility. Sci China Life Sci 66, 1459–1481.
Wang, Y., Medvid, R., Melton, C., Jaenisch, R., and Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39, 380–385.
Wray, J., Kalkan, T., Gomez-Lopez, S., Eckardt, D., Cook, A., Kemler, R., and Smith, A. (2011). Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13, 838–845.
Wu, B., Wang, Y., Yan, J., Liu, M., Li, X., Tang, F., and Bao, S. (2024). Blastoids generated purely from embryonic stem cells both in mice and humans. Sci China Life Sci 67, 418–420.
Wu, H., Yin, Q.F., Luo, Z., Yao, R.W., Zheng, C.C., Zhang, J., Xiang, J.F., Yang, L., and Chen, L.L. (2016). Unusual processing generates SPA lncRNAs that sequester multiple RNA binding proteins. Mol Cell 64, 534–548.
Xing, Y.H., Yao, R.W., Zhang, Y., Guo, C.J., Jiang, S., Xu, G., Dong, R., Yang, L., and Chen, L.L. (2017). SLERT regulates DDX21 rings associated with Pol I transcription. Cell 169, 664–678.e16.
Yin, Q.F., Yang, L., Zhang, Y., Xiang, J.F., Wu, Y.W., Carmichael, G.G., and Chen, L.L. (2012). Long noncoding RNAs with snoRNA ends. Mol Cell 48, 219–230.
Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519–523.
Zhang, Z., Wu, X., Yang, J., Liu, X., Liu, R., and Song, Y. (2023). Highly efficient base editing in rabbit by using near-PAMless engineered CRISPR/Cas9 variants. Sci China Life Sci 66, 635–638.
Zhou, J., Zhang, S., Wang, H., and Sun, H. (2017). LncFunNet: an integrated computational framework for identification of functional long noncoding RNAs in mouse skeletal muscle cells. Nucleic Acids Res 45, e108.
Zhou, L., Sun, K., Zhao, Y., Zhang, S., Wang, X., Li, Y., Lu, L., Chen, X., Chen, F., Bao, X., et al. (2015). Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 6, 10026.
Zhu, W., Bu, G., Hu, R., Zhang, J., Qiao, L., Zhou, K., Wang, T., Li, Q., Zhang, J., Wu, L., et al. (2024). KLF4 facilitates chromatin accessibility remodeling in porcine early embryos. Sci China Life Sci 67, 96–112.
Acknowledgement
This work was supported by the National Natural Science Foundation of China (31900447, 32070792 and 91940302) and the Startup Foundation of Dermatology Hospital, Southern Medical University (2019RC06). The authors wish to thank the Bioinformatics Center at the Dermatology Hospital of Southern Medical University for providing high-performance computational resources.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The author(s) declare that they have no conflict of Interest.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Li, Z., Li, X., Lin, J. et al. Reevaluation by the CRISPR/Cas9 knockout approach revealed that multiple pluripotency-associated lncRNAs are dispensable for pluripotency maintenance while Snora73a/b is essential for pluripotency exit. Sci. China Life Sci. 67, 2198–2212 (2024). https://doi.org/10.1007/s11427-023-2594-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11427-023-2594-3