[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

BUSA Deep Learning Model for EEG Signal Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Depression, a debilitating mental illness, profoundly impacts an individual’s cognition, behaviour, and emotions. Despite efforts to quantify depression rates through electro-encephalo-gram (EEG) signal analysis, classification remains challenging due to inherent noise. This paper introduces a Bat based UNET signal analysis, aimed at accurately classifying depression rates using a normal EEG dataset. It comprises of pre-processing, feature extraction, feature selection, and classification stages. The framework excels at noise reduction during pre-processing, enhancing dataset integrity. Feature extraction leverages band power and correlation dimension to extract crucial features. Furthermore, feature selection optimizes classification accuracy by refining the fitness function of bats in the classification layer. Utilizing a standardized EEG dataset implemented in Matrix Laboratory (MATLAB), the proposed technique demonstrates superior performance compared to existing methods, as evidenced by metrics such as accuracy, area under the curve, precision, and recall (or sensitivity). This innovative framework represents a significant advancement in the classification of depression rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The software application developed by the present authors is available.

Code Availability

Code availability is ensured by the corresponding author.

References

  1. Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology, 29(3), R80–R85.

    Article  Google Scholar 

  2. Gupta, V., Kanungo, A., Saxena, N. K., et al. (2023). An adaptive optimized schizophrenia electroencephalogram disease prediction framework. Wireless Personal Communications, 130, 1191–1213. https://doi.org/10.1007/s11277-023-10326-2

    Article  Google Scholar 

  3. Rahman, M. A., Uddin, M. S., & Ahmad, M. (2019). Modeling and classification of voluntary and imagery movements for brain–computer interface from fNIR and EEG signals through convolutional neural network. Health Information Science and Systems, 7(1), 1–22.

    Article  Google Scholar 

  4. Kurapa, A., Rathore, D., Edla, D. R., et al. (2020). A hybrid approach for extracting EMG signals by filtering EEG data for IoT applications for immobile persons. Wireless Personal Communications, 114, 3081–3101. https://doi.org/10.1007/s11277-020-07518-5

    Article  Google Scholar 

  5. Tang, X., et al. (2020). Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network. Expert Systems with Applications, 149, 113285.

    Article  Google Scholar 

  6. Rus, Marc, P. Dinsoreanu, M. Potolea R. & Muresan, R. C. "Classification of EEG signals in an object recognition task," 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 2017, 391–395, https://doi.org/10.1109/ICCP.2017.8117036

  7. Nirmala Sreedharan, N. P., et al. (2018). Grey wolf optimisation-based feature selection and classification for facial emotion recognition. IET Biometrics, 7(5), 490–499.

    Article  Google Scholar 

  8. Zazzaro, G., et al. (2019) Eeg signal analysis for epileptic seizures detection by applying data mining techniques. Internet of Things, 100048.

  9. Kim, C., Sun, J., Liu, D., Wang, Q., & Paek, S. (2018). An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI. Medical and Biological Engineering an Computing, 56(9), 1645–1658. https://doi.org/10.1007/s11517-017-1761-4

    Article  Google Scholar 

  10. Barata, C., Celebi, M. E., & Marques, J. S. (2018). A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE Journal of Biomedical and Health Informatics, 23(3), 1096–1109.

    Article  Google Scholar 

  11. Scapicchio, C., et al. (2021). A deep look into radiomics. La Radiologiamedica, 1–16.

  12. Rudas, Á., & Sándor, L. (2019). On activity identification pipelines for a low-accuracy EEG device. In 2019 18th IEEE international conference on machine learning and applications (ICMLA). IEEE.

  13. Gupta, V., & Pachori, R. B. (2020). Classification of focal EEG signals using FBSE based flexible time-frequency coverage wavelet transform. Biomedical Signal Processing and Control, 62, 102124.

    Article  Google Scholar 

  14. Khare, S. K., & Bajaj, V. (2020). Time-frequency representation and convolutional neural network-based emotion recognition. IEEE Transactions on Neural Networks and Learning Systems, 32, 2901–2909.

    Article  Google Scholar 

  15. Gupta, V., Kanungo, A., Kumar, P., et al. (2023). A design of bat-based optimized deep learning model for EEG signal analysis. Multimedia Tools and Applications, 82, 45367–45387. https://doi.org/10.1007/s11042-023-15462-2

    Article  Google Scholar 

  16. Büyükşahin, Ü. Ç., & Ertekin, S. (2019). Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing, 361, 151–163.

    Article  Google Scholar 

  17. Subasi, A., Jukic, S., & Kevric, J. (2019). Comparison of EMD, DWT and WPD for the localization of epileptogenic foci using Random Forest classifier. Measurement, 146, 846–855.

    Article  Google Scholar 

  18. Gu, X., et al. (2021). EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18, 1645–1666.

    Article  Google Scholar 

  19. Islam, M. R., et al. (2021). EEG channel correlation based model for emotion recognition. Computers in Biology and Medicine, 136, 104757.

    Article  Google Scholar 

  20. Manojprabu, M., & Dhulipala, V. R. S. (2021). Power aware hessian multi-set canonical correlations based algorithm for wireless EEG sensor networks. Wireless Personal Communications, 117, 2745–2756. https://doi.org/10.1007/s11277-020-07045-3

    Article  Google Scholar 

  21. Rajasekar, P., & Pushpalatha, M. (2020). Huffman quantization approach for optimized EEG signal compression with transformation technique. Soft Computing, 24(19), 14545–14559.

    Article  Google Scholar 

  22. Amin, S. U., et al. (2019). Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Generation Computer Systems, 101, 542–554.

    Article  Google Scholar 

  23. Zhang, Y., Zhang, Z., & Ji, X. (2018). EEG-based classification of emotions using empirical mode decomposition and autoregressive model. Multimedia Tools and Applications, 77(20), 26697–26710.

    Article  Google Scholar 

  24. Ouyang, C. S., et al. (2020). EEG autoregressive modeling analysis: A diagnostic tool for patients with epilepsy without epileptiform discharges. Clinical Neurophysiology, 131(8), 1902–1908.

    Article  Google Scholar 

  25. Dose, H., et al. (2018). An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Systems with Applications, 114, 532–542.

    Article  Google Scholar 

  26. Algan, G., & Ulusoy, I. (2021). Image classification with deep learning in the presence of noisy labels: A survey. Knowledge-Based Systems, 215, 106771.

    Article  Google Scholar 

  27. Zhang, Y., et al. (2017). Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Processing Letters, 45(2), 365–378.

    Article  Google Scholar 

  28. Zhang, D., et al. (2019). A convolutional recurrent attention model for subject-independent EEG signal analysis. IEEE signal processing letters, 26(5), 715–719.

    Article  Google Scholar 

  29. https://www.physionet.org/content/eegmmidb/1.0.0/

  30. Sheetal, A., Singh, H., & Kaur, A. (2019). QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integrated Circuits and Signal Processing, 98, 1–9.

    Article  Google Scholar 

  31. Subramanian, B., & Ramasamy, A. (2017). Investigation on the compression of electrocardiogram signals using dual tree complex wavelet transform. IETE Journal of Research. https://doi.org/10.1080/03772063.2016.1275988

    Article  Google Scholar 

  32. Dasgupta, H. (2016). Human age recognition by electrocardiogram signal based on artificial neural network. Sensing and Imaging, 17, 1–15.

    Article  Google Scholar 

  33. Gupta, V., & Mittal, M. (2020). Efficient R-peak detection in electrocardiogram signal based on features extracted using hilbert transform and burg method. Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-020-00423-2

    Article  Google Scholar 

  34. Gupta, V., & Mittal, M. (2019). QRS complex detection using STFT chaos analysis and PCA in standard and real-time ECG databases. Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-019-00398-9

    Article  Google Scholar 

  35. Gupta, V., Mittal, M., Mittal, V., Diwania, S., Singh, R., & Gupta, V. (2023). A firefly based deep belief signal specification based novel hybrid technique for EEG signal analysis. IETE Journal of Research. https://doi.org/10.1080/03772063.2023.2220698

    Article  Google Scholar 

  36. Data acquisition, loggers, amplifiers, transducers, electrodes | BIOPAC, https://www.biopac.com

  37. Rao, K. D. (2015). DWT based detection of R-peaks and data compression of ECG signals. IETE Journal of Research, 43, 345–349.

    Article  MathSciNet  Google Scholar 

  38. Mehta, S. S., & Lingayat, N. S. (2008). SVM-based algorithm for recognition of QRS complexes in electrocardiogram. IRBM, 29, 310–317.

    Article  Google Scholar 

  39. HanumanthaRao, G., & Rekha, S. (2019). A 0.8-V, 55.1-dB DR, 100 Hz low-pass filter with low-power PTAT for bio-medical Applications. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1682074

    Article  Google Scholar 

  40. Gupta, V., & Mittal, M. (2019). R-peak detection in ECG signal using yule-walker and principal component analysis. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1575292

    Article  Google Scholar 

  41. Gupta, V., & Mittal, M. (2018). Electrocardiogram signals interpretation using chaos theory. Journal of Advanced Research in Dynamical and Control Systems, 10(2), 2392–2397.

    Google Scholar 

  42. Gupta, V., & Mittal, M. (2021). A novel method of cardiac arrhythmia detection in electrocardiogram signal. International Journal of Medical Engineering and Informatics. https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijmei.

  43. Kaur, I., Rajni, R., & Marwaha, A. (2016). ECG signal analysis and arrhythmia detection using wavelet transform. Journal of The Institution of Engineers (India): Series B, 97(4), 499–507.

    Google Scholar 

  44. Rai, H. M., Trivedi, A., Chatterjee, K., & Shukla, S. (2014). R-peak detection using daubechies wavelet and ECG signal classification using radial basis function neural network. Journal of The Institution of Engineers (India): Series B, 95(1), 63–71.

    Google Scholar 

  45. Akbari, H., Sadiq, M. T., & Rehman, A. U. (2021). Classification of normal and depressed EEG signals based on centeredcorrentropy of rhythms in empirical wavelet transform domain. Health Information Science and Systems, 9(1), 1–15.

    Article  Google Scholar 

  46. Hasanzadeh, F., Mohebbi, M., & Rostami, R. (2019). Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal. Journal of Affective Disorders, 256, 132–142.

    Article  Google Scholar 

  47. Gupta, V., Saxena, N. K., Kanungo, A., et al. (2024). ECG signal analysis using autoregressive modelling with and without baseline wander. International Journal of Systems Assurance Engineering and Management, 15, 1119–1146. https://doi.org/10.1007/s13198-023-02196-5

    Article  Google Scholar 

  48. Gupta, V., Saxena, N. K., Kanungo, A., et al. (2023). An efficient FrWT and IPCA tools for an automated healthcare CAD system. Wireless Personal Communications, 133, 2687–2708. https://doi.org/10.1007/s11277-024-10877-y

    Article  Google Scholar 

  49. Gupta, V., Kumar, P., Diwania, S., Saxena, N. K., & Rathore, N. S. (2023). Pre-processing of ECG signal based on ANF and ICA: A comparison. International Journal of Data Analysis Techniques and Strategies, 15(3), 179–197.

    Article  Google Scholar 

  50. Gupta, V., Sharma, A. K., Pandey, P. K., Jaiswal, R. K., & Gupta, A. (2023). Pre-processing based ECG signal analysis using emerging tools. IETE Journal of Research. https://doi.org/10.1080/03772063.2023.2202162

    Article  Google Scholar 

  51. Roy, G., & Bhaumik, S. (2022). Classification of MI EEG signal using minimum set of channels to control a lower limb assistive device. Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-022-00783-x

    Article  Google Scholar 

  52. Cleatus, T. S., & Thungamani, M. (2022). Epileptic seizure detection using spectral transformation and convolutional neural networks. Journal of The Institution of Engineers (India): Series B, 103, 1115–1125. https://doi.org/10.1007/s40031-021-00693-4

    Article  Google Scholar 

  53. Kumari, N., Anwar, S., & Bhattacharjee, V. (2023). A comparative analysis of machine and deep learning techniques for EEG evoked emotion classification. Wireless Personal Communications, 128, 2869–2890. https://doi.org/10.1007/s11277-022-10076-7

    Article  Google Scholar 

  54. Paul, A., Chakraborty, A., Sadhukhan, D., et al. (2022). EEG based automated detection of six different eye movement conditions for implementation in personal assistive application. Wireless Personal Communications, 124, 909–930.

    Article  Google Scholar 

  55. Singh, K., & Malhotra, J. (2022). Predicting epileptic seizures from EEG spectral band features using convolutional neural network. Wireless Personal Communications, 125, 2667–2684. https://doi.org/10.1007/s11277-022-09678-y

    Article  Google Scholar 

  56. Desai, R., Porob, P., Rebelo, P., et al. (2020). EEG data classification for mental state analysis using wavelet packet transform and Gaussian process classifier. Wireless Personal Communications, 115, 2149–2169. https://doi.org/10.1007/s11277-020-07675-7

    Article  Google Scholar 

  57. Bisht, A., & Singh, P. (2020). Identification of single and multiple ocular peaks in EEG signal using adaptive thresholding technique. Wireless Personal Communications, 113, 799–819. https://doi.org/10.1007/s11277-020-07253-x

    Article  Google Scholar 

  58. Gupta, V., Mittal, M., & Mittal, V. (2022). A simplistic and novel technique for ECG signal pre-processing. IETE Journal of Research. https://doi.org/10.1080/03772063.2022.2135622

    Article  Google Scholar 

  59. Gupta, V., Kumar, P., Kanungo, A., & Kumar, P. (2021). Myocardial infarction detection and location identification from integrated ECG and MRI images using deep learning algorithms, Indian Patent, Application No. 202111003504, Patent No. 508096, Publication date 27/01/2021.

  60. Gupta, V., Mittal, M., Mittal, V., et al. (2023). ECG signal analysis based on the spectrogram and spider monkey optimisation technique. Journal of The Institution of Engineers (India): Series B, 104, 153–164. https://doi.org/10.1007/s40031-022-00831-6

    Article  Google Scholar 

  61. Gupta, V. (2023). Wavelet transform and vector machines as emerging tools for computational medicine. Journal of Ambient Intelligence and Humanized Computing, 14, 4595–4605. https://doi.org/10.1007/s12652-023-04582-0

    Article  Google Scholar 

  62. Gupta, V. (2023). Application of chaos theory for arrhythmia detection in pathological databases. International Journal of Medical Engineering and Informatics, 15(2), 191–202.

    Article  MathSciNet  Google Scholar 

  63. Gupta, V. (2024). DBPF pre-processing-based improved ECG signal analysis in medical engineering applications. International Journal of Engineering Systems Modelling and Simulation, (In Press).

  64. Chakraborty, P., & Chandrapragasam, T. (2022). Extended applications of compressed sensing algorithm in biomedical signal and image compression. Journal of The Institution of Engineers (India): Series B, 103, 83–91. https://doi.org/10.1007/s40031-021-00592-8

    Article  Google Scholar 

  65. Kaur, K., Kaur Walia, G., & Kaur, J. (2018). Neural network ensemble and jaya algorithm based diagnosis of brain tumor using MRI images. Journal of The Institution of Engineers (India) Series B, 99, 509–517. https://doi.org/10.1007/s40031-018-0355-3

    Article  Google Scholar 

  66. Paul, S., Bhattacharya, P., Pandey, A. K., et al. (2014). Application of mathematical modelling as a tool to analyze the EEG signals in rat model of focal cerebral ischemia. Journal of The Institution of Engineers (India): Series B, 95, 23–27.

    Google Scholar 

  67. Nithya, S., Ramakrishnan, S., Murugavel, A. S. M., et al. (2024). Detection of epileptic seizure from EEG signals using majority rule based local binary pattern. Wireless Personal Communications. https://doi.org/10.1007/s11277-024-10916-8

    Article  Google Scholar 

  68. Bashir, N., Narejo, S., Naz, B., et al. (2023). A machine learning framework for major depressive disorder (MDD) detection using non-invasive EEG signals. Wireless Personal Communications. https://doi.org/10.1007/s11277-023-10445-w

    Article  Google Scholar 

  69. Ali, A., Afridi, R., Soomro, T. A., et al. (2022). A single-channel wireless EEG headset enabled neural activities analysis for mental healthcare applications. Wireless Personal Communications, 125, 3699–3713. https://doi.org/10.1007/s11277-022-09731-w

    Article  Google Scholar 

  70. Kaur, C., Singh, P., Bisht, A., et al. (2022). Recent developments in spatio-temporal EEG source reconstruction techniques. Wireless Personal Communications, 122, 1531–1558. https://doi.org/10.1007/s11277-021-08960-9

    Article  Google Scholar 

  71. Kumar, K. B. S., & Sujatha, B. R. (2022). FPGA design of an efficient EEG signal transmission through 5G wireless network using optimized pilot based channel estimation: A telemedicine application. Wireless Personal Communications, 123, 3597–3621.

    Article  Google Scholar 

  72. Selvi, R., & Vijayakumaran, C. (2023). An efficient multimodal emotion identification using FOX optimized double deep Q-learning. Wireless Personal Communications, 132, 2387–2406. https://doi.org/10.1007/s11277-023-10685-w

    Article  Google Scholar 

  73. Singh, G., Kaur, M., & Singh, B. (2021). Detection of epileptic seizure EEG signal using multiscale entropies and complete ensemble empirical mode decomposition. Wireless Personal Communications, 116, 845–864. https://doi.org/10.1007/s11277-020-07742-z

    Article  Google Scholar 

  74. El-Gindy, S. A. E., Ibrahim, F. E., Alabasy, M., et al. (2022). Detection of abnormal activities from various signals based on statistical analysis. Wireless Personal Communications, 125, 1013–1046. https://doi.org/10.1007/s11277-022-09565-6

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All simulations and methodology were carried out by the corresponding author. Literature survey was conducted collaboratively by all authors.

Corresponding author

Correspondence to Varun Gupta.

Ethics declarations

Conflict of interest

The authors assert that they have no conflict of interest.

Ethical Approval

All authors confirm that ethical approval was obtained.

Consent to Participate

All authors have provided their consent to participate in this study.

Consent to Publication

All authors have provided their consent to publish the paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Ather, D. BUSA Deep Learning Model for EEG Signal Analysis. Wireless Pers Commun 136, 2521–2543 (2024). https://doi.org/10.1007/s11277-024-11409-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11409-4

Keywords

Navigation