[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

ECG Signal Analysis based on the Spectrogram and Spider Monkey Optimisation Technique

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Heart is responsible for circulation of the blood throughout the human body. The conduction of the heart is nonlinear in nature and hence needs appropriate utilisation of technological advancements. The activity of the heart is assessed through an electrocardiogram (ECG) signal that consists of three different types of waves viz. P-wave, QRS-wave (also called QRS complex), and T-wave. But these waves are non-stationary, and hence, investigation of effective tools is essential for their accurate analysis. In this paper, the spectrogram technique is proposed to be used for feature extraction to analyse different segments of heartbeats (energy change) through colour contrasts of various frequency components with respect to time unlike the existing techniques where it was not possible. The features are extracted after the pre-processing accomplished using a digital bandpass filter (DBPF). The extracted features are further proposed to be optimised using the spider monkey optimisation technique due to its acclaimed effectiveness in solving the real-world optimisation problems. The robustness of the proposed methodology is established in fulfilling the ever-increasing demand of modern health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ECG:

Electrocardiogram

MECG:

Maternal ECG

fECG:

Foetal ECG

Se:

Sensitivity

PP:

Positive predictivity

IFIR:

Interpolated finite impulse response

SVM:

Support vector machine

DR:

Detection rate

HRV:

Heart rate variability

ANS:

Autonomic nervous system

PCA:

Principal component analysis

ANN:

Artificial neural networks

KNN:

K-nearest neighbour

Acc:

Accuracy

SSA:

Salp swarm algorithm

ICA:

Independent component analysis

DER:

Detection error rate

SMO:

Spider monkey optimisation

MIT:

Massachusetts Institute of Technology

BIH:

Beth Israel Hospital

EC:

Entropy criterion

ISC:

Improved So and Chan

RLE:

Run-length encoding

SampEn:

Sample entropy

ANCs:

Adaptive noise cancellers

SNR:

Signal-to-noise ratio

WT:

Wavelet transform

SA:

Sino-atrial

AV:

Atrio-ventricular

PLI:

Power line interference

BLW:

Base line wander

EMG:

Electromyogram

References

  1. Cardiac conduction system. https://medlineplus.gov/ency/anatomyvideos/000021.htm. Accessed on 07 May 2021

  2. A. Sheetal, H. Singh, A. Kaur, QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integr. Circuits Signal Process. 98(1), 1–9 (2019)

    Article  Google Scholar 

  3. I. Kaur, R. Rajni, A. Marwaha, ECG signal analysis and arrhythmia detection using wavelet transform. J. Inst. Eng. India Ser. B. 97(4), 499–507 (2016)

    Article  Google Scholar 

  4. V. Gupta, A. Kanungo, P. Kumar, A.K. Sharma, A. Gupta, Auto-regressive time frequency analysis (ARTFA) of electrocardiogram (ECG) signal. Int. J. Appl. Eng. Res. 13(6), 133–138 (2018)

    Google Scholar 

  5. S.O. Rajankar, S.N. Talbar, An electrocardiogram signal compression techniques: a comprehensive review. Analog Integr. Circuits Signal Process. 98(1), 59–74 (2019)

    Article  Google Scholar 

  6. V. Gupta, M. Mittal, V. Mittal et al., Detection of R-peaks using fractional Fourier transform and principal component analysis. J. Ambient Intell. Hum. Comput. 13, 961–972 (2022). https://doi.org/10.1007/s12652-021-03484-3

    Article  Google Scholar 

  7. W. Xingyuan, M. Juan, Wavelet-based hybrid ECG compression technique. Analog Integr. Circuits Signal Process. 59(3), 301–308 (2009)

    Article  Google Scholar 

  8. V. Gupta et al., Electrocardiogram signal pattern recognition using PCA and ICA on different databases for improved health management. Int. J. Appl. Pattern Recognit. 7(1), 41–63 (2022)

    Article  Google Scholar 

  9. V. Gupta, M. Mittal, V. Mittal et al., FrWT-PPCA-based R-peak detection for improved management of healthcare system. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1982412

    Article  Google Scholar 

  10. K. Bensafia, A. Mansour, A.O. Boudraa et al., Blind separation of ECG signals from noisy signals affected by electrosurgical artifacts. Analog Integr. Circuits Signal Process. 104, 191–204 (2020). https://doi.org/10.1007/s10470-020-01674-1

    Article  Google Scholar 

  11. M. Engin, ECG-late potential extraction using averaged singular—values of third-order cumulant (TOC) based bispectrum. Analog Integr. Circuits. Signal Process 33, 301–303 (2002). https://doi.org/10.1023/A:1020722030618

    Article  Google Scholar 

  12. S. Zourob, K. Hayatleh, S. Barker et al., Increasing signal to noise ratio and minimising artefacts in biomedical instrumentation systems. Analog Integr Circuits Signal Process. 95, 403–408 (2018). https://doi.org/10.1007/s10470-018-1150-4

    Article  Google Scholar 

  13. M. Chakraborty, D. Ghosh, Quantitative assessment of arrhythmia using non-linear approach: a non-invasive prognostic tool. J. Inst. Eng. India Ser. B. (2017). https://doi.org/10.1007/s40031-017-0307-3

    Article  Google Scholar 

  14. B. Halder, S. Mitra, M. Mitra, Classification of complete myocardial infarction using rule-based rough set method and rough set explorer system. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1588175

    Article  Google Scholar 

  15. S.S. Mehta, N.S. Lingayat, Development of SVM based ECG pattern recognition technique. IETE J. Res. 54(1), 5–11 (2008)

    Article  Google Scholar 

  16. H.M. Rai, A. Trivedi, S. Shukla, ECG signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier. Measurement 46, 3238–3246 (2013)

    Article  Google Scholar 

  17. V. Gupta, G. Singh, A. Gupta and A. Singh, Occupancy grid mapping using artificial neural networks. 2010 International Conference on Industrial Electronics, Control and Robotics, 247–250 Orissa, 2010 https://doi.org/10.1109/IECR.2010.5720161

  18. V. Gupta, M. Mittal, V. Mittal, Chaos theory: an emerging tool for arrhythmia detection. Sens. Imaging 21(10), 1–22 (2020). https://doi.org/10.1007/s11220-020-0272-9

    Article  Google Scholar 

  19. V. Gupta, and M. Mittal, A novel method of cardiac arrhythmia detection in electrocardiogram signal. IJMEI (2019) https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijmei

  20. A. NguomkamNegou, J. Kengne, A minimal three-term chaotic flow with coexisting routes to chaos, multiple solutions, and its analog circuit realisation. Analog Integr. Circuits Signal Process. (2019). https://doi.org/10.1007/s10470-019-01436-8

    Article  Google Scholar 

  21. V. Gupta, M. Mittal, QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. India Ser. B. 100(5), 489–497 (2019)

    Article  Google Scholar 

  22. V. Gupta, M. Mittal, Electrocardiogram signals interpretation using chaos theory. J. Adv. Res. Dyn. Control Syst. 9, 2392–2397 (2018)

    Google Scholar 

  23. N. Abdul Jaleel, P. Vijaya Kumar, Implementation of an efficient FPGA architecture for capsule endoscopy processor core using hyper analytic wavelet-based image compression technique. Int. J. Data Anal. Tech. Strateg 12(3), 262–286 (2020)

    Article  Google Scholar 

  24. V. Gupta, M. Mittal, R-Peak detection in ECG signal using yule-walker and principal component analysis. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1575292

    Article  Google Scholar 

  25. V. Gupta, M. Mittal, Principal component analysis & factor analysis as an enhanced tool of pattern recognition. Int. J. Elec. Electr. Eng. Telecoms 1(2), 73–7844 (2015)

    Google Scholar 

  26. G. Singh, V.Gupta, N.S. Rekhi, Power line interference noise removal from ECG signal using adaptive filter LMS algorithms. BEATs, NIT Jalandhar, India (2010)

  27. B.T. Krishna, Electrocardiogram signal and linear time-frequency transforms. J. Inst. Eng. India Ser. B. 95, 377–382 (2014)

    Article  Google Scholar 

  28. P. Kora, K.S.R. Krishna, ECG based heart arrhythmia detection using wavelet coherence and bat algorithm. Sens. Imag., 17 (2016).

  29. V. Gupta, M. Mittal, V. Mittal et al., An efficient AR modeling based electrocardiogram signal analysis for health informatics. Int. J. Med. Eng. Informatics (IJMEI) 14(1), 74–89 (2021). https://doi.org/10.1504/IJMEI.2022.119314

    Article  Google Scholar 

  30. M. Das, S. Ari, Analysis of ECG signal denoising method based on S-transform. IRBM 34(6), 362–370 (2013)

    Article  Google Scholar 

  31. V. Gupta, M. Mittal, KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation. Procedia Comput. Sci. 125, 18–24 (2018)

    Article  Google Scholar 

  32. K. Karda, N. Dubey, A. Kanungo, V. Gupta, Automation of noise sampling in deep reinforcement learning. Int. J. Appl. Pattern Recognit. 7(1), 15–23 (2022)

    Article  Google Scholar 

  33. T.A.A. Ali, Z. Xiao, J. Sun, S. Mirjalili, V. Havyarimana, H. Jiang, Optimal design of IIR wideband digital differentiators and integrators using salp swarm algorithm. Knowl. Based Syst. 182, 104834 (2019). https://doi.org/10.1016/j.knosys.2019.07.005

    Article  Google Scholar 

  34. C. Nayak, S.K. Saha, R. Kar, D. Mandal, An efficient QRS complex detection using optimally designed digital differentiator. Circuits System Signal Process. 38(5), 716–749 (2018)

    Google Scholar 

  35. S. Chandra, A. Sharma, G.K. Singh, Computationally efficient cosine modulated filter bank design for ECG signal compression. IRBM (2020). https://doi.org/10.1016/j.irbm.2019.06.002

    Article  Google Scholar 

  36. W.H. Jung, S.G. Lee, An arrhythmia classification method in utilising the weighted KNN and the fitness rule. IRBM (2017). https://doi.org/10.1016/j.irbm.2017.04.002

    Article  Google Scholar 

  37. V. Gupta, M. Mittal, Respiratory signal analysis using PCA, FFT and ARTFA. In: Proc. of the 2016 International Conference on Electrical Power and Energy Systems (ICEPES), India, 221–225 December 2016

  38. V. Gupta, and M. Mittal, ECG signal analysis: past, present and future. In: Proc. 8th IEEE Power India International Conference (PIICON), India, 1–6 December 2018

  39. E.J.S. Luz, W.R. Schwartz, G.C. Chávez, D. Menotti, ECG-based heartbeat classification for arrhythmia detection: a survey. J. Comput. Methods Prog. Biomed. 127, 144–164 (2016)

    Article  Google Scholar 

  40. V. Gupta, M. Mittal, V. Mittal, R-peak detection based chaos analysis of ECG signal. Analog Integr. Circuits Signal Process. (2019). https://doi.org/10.1007/s10470-019-01556-1

    Article  Google Scholar 

  41. V. Gupta, M. Mittal, A comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. IRBM 40(3), 145–156 (2019)

    Article  Google Scholar 

  42. Z. Zidelmal, QRS detection based on wavelet coefficients. Comp. Met. Prog. Biomed. 107(3), 490–496 (2012)

    Article  Google Scholar 

  43. S.S. Mehta, N.S. Lingayat, SVM based QRS detection in electrocardiogram using signal entropy. IETE J. Res. 54(3), 231–240 (2008)

    Article  Google Scholar 

  44. S.S. Mehta, D.A. Shete, N.S. Lingayat, V.S. Chouhan, K-means algorithm for the detection and delineation of QRS-complexes in electrocardiogram. IRBM 31, 48–54 (2010)

    Article  Google Scholar 

  45. S.S. Mehta, N.S. Lingayat, SVM-based algorithm for recognition of QRS complexes in electrocardiogram. IRBM 29, 310–317 (2008)

    Article  Google Scholar 

  46. V. Gupta, M. Mittal, Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. J. Inst. Eng. (India) Ser. B. (2020). https://doi.org/10.1007/s40031-020-00488-z

    Article  Google Scholar 

  47. S. Mian Qaisar, S.F. Hussain, An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection. J. Ambient Intell. Hum. Comput. (2021). https://doi.org/10.1007/s12652-021-03275-w

    Article  Google Scholar 

  48. U. Qidwai, J. Chaudhry, S. Jabbar et al., Using casual reasoning for anomaly detection among ECG live data streams in ubiquitous healthcare monitoring systems. J. Ambient Intell. Hum. Comput. 10, 4085–4097 (2019). https://doi.org/10.1007/s12652-018-1091-x

    Article  Google Scholar 

  49. A. Khamparia, B. Pandey, A novel integrated principal component analysis and support vector machines-based diagnostic system for detection of chronic kidney disease. Int. J. Data Anal. Tech. Strateg. 12(2), 99–113 (2020). https://doi.org/10.1504/IJDATS.2020.106641

    Article  Google Scholar 

  50. G. Gnana Subha, S. SujaPriyadharsini, An efficient algorithm based on combined encoding techniques for compression of ECG data from multiple leads. Wirel. Pers. Commun. 108, 2137–2147 (2019). https://doi.org/10.1007/s11277-019-06513-9

    Article  Google Scholar 

  51. M.J. Al-Dujaili, M.T. Mezeel, Novel approach for reinforcement the extraction of ECG signal for twin fetuses based on modified BSS. Wirel. Pers. Commun. 119, 2431–2450 (2021). https://doi.org/10.1007/s11277-021-08337-y

    Article  Google Scholar 

  52. G. Premalatha, V.T. Bai, Wireless IoT and cyber-physical system for health monitoring using honey badger optimized least-squares support-vector machine. Wirel. Pers. Commun. (2022). https://doi.org/10.1007/s11277-022-09500-9

    Article  Google Scholar 

  53. V. Gupta, M. Mittal, V. Mittal, A novel FrWT based arrhythmia detection in ECG signal using YWARA and PCA. Wirel. Pers. Commun. (2021). https://doi.org/10.1007/s11277-021-09403-1

    Article  Google Scholar 

  54. W. Xingyuan, M. Juan, Wavelet-based hybrid ECG compression technique. Analog Integr. Circuits Signal Process. 59(3), 301–308 (2009)

    Article  Google Scholar 

  55. G. Tsirimokou, C. Psychalinos, Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs. Analog Integr. Circuits Signal Process 81, 393–405 (2014). https://doi.org/10.1007/s10470-014-0391-0

    Article  Google Scholar 

  56. Y.S. Alshebly, M. Nafea, Isolation of fetal ECG signals from abdominal ECG using wavelet analysis. IRBM 41(5), 252–260 (2020)

    Article  Google Scholar 

  57. S. Rekik, N. Ellouze, Enhanced and optimal algorithm for QRS detection. IRBM 38(1), 56–61 (2017)

    Article  Google Scholar 

  58. X. Gu, J. Hu, L. Zhang, J. Ding, F. Yan, An improved method with high anti-interference ability for R Peak detection in wearable devices. IRBM 41(3), 172–183 (2020)

    Article  Google Scholar 

  59. S. Chandra, A. Sharma, G.K. Singh, Computationally efficient cosine modulated filter bank design for ECG signal compression. IRBM 41(1), 2–17 (2020)

    Article  Google Scholar 

  60. S.S. Mehta and N.S. Lingayat. ECG pattern classification using support vector machine. Advances in Pattern Recognition, pp. 295–298 (2006).

  61. S.S. Mehta and N.S. Lingayat biomedical signal processing using SVM, IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007)

  62. P. Marwaha, R.K. Sunkaria, Cardiac variability time-series analysis by sample entropy and multiscale entropy. Int. J. Med. Eng. Informatics 7(1), 1–14 (2015)

    Article  Google Scholar 

  63. D. Amar, S. Abboud, P-wave morphology in focal atrial tachycardia using a 3D numerical model of the heart. Int. J. Med. Eng. Informatics 8(3), 263–274 (2016)

    Article  Google Scholar 

  64. M.N. Salman, P.T. Rao, M.Z.U. Rahman, Cardiac signal enhancement using normalised variable step algorithm for remote healthcare monitoring systems. Int. J. Med. Eng. Informatics 9(2), 145–161 (2017)

    Article  Google Scholar 

  65. H.S. Niranjana Murthy, M. Meenakshi, Novel and efficient algorithms for early detection of myocardial ischemia. Int. J. Med. Eng. Informatics 9(4), 351–372 (2017)

    Article  Google Scholar 

  66. S.S. Mehta, N.S. Lingayat, Combined entropy based method for detection of QRS complexes in 12-lead electrocardiogram using SVM. Comput. Biol. Med. 38(1), 138–145 (2008)

    Article  Google Scholar 

  67. K. Rawal, B.S. Saini, I. Saini, Effect of age and postural related changes on cardiac autonomic function in the pre-menopausal and post-menopausal women. Int. J. Med. Eng. Informatics 9(4), 299–315 (2017)

    Article  Google Scholar 

  68. S.S. Mehta, N.S. Lingayat, Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Comput. Methods Programs Biomed. 93(1), 46–60 (2009)

    Article  Google Scholar 

  69. M. Mortezaee, Z. Mortezaie, V. Abolghasemi, An improved SSA-based technique for EMG removal from ECG. IRBM 40, 62–68 (2019)

    Article  Google Scholar 

  70. H.M. Rai, A. Trivedi, K. Chatterjee, S. Shukla, R-Peak detection using daubechies wavelet and ecg signal classification using radial basis function neural network. J. Inst. Eng. India Ser. B. 95(1), 63–71 (2014)

    Article  Google Scholar 

  71. Bandpass filter. https://en.wikipedia.org/wiki/Band-pass_filter. Accessed on 07 April 2021

  72. Spectrogram graph. https://www.roomeqwizard.com/help/help_en-GB/html/graph_spectrogram.html. Accessed on 23 June 2020

  73. V. Agrawal, R. Rastogi, D.C. Tiwari, Spider monkey optimization: a survey. Int. J. Syst. Assur. Eng. Manag. (2018). https://doi.org/10.1007/s13198-017-0685-6

    Article  Google Scholar 

  74. Spectrogram. https://en.wikipedia.org/wiki/Spectrogram. Accessed on 23 June 2020

  75. V.Gupta, M.Mittal, V.Mittal, and A. Gupta, ECG signal analysis using CWT, spectrogram and autoregressive technique. Iran J. Comput. Sci. Accepted (in press)

  76. V. Gupta and M. Mittal, Respiratory signal analysis using PCA, FFT and ARTFA. 2016 International Conference on Electrical Power and Energy Systems (ICEPES), Bhopal, 221–225 2016 https://doi.org/10.1109/ICEPES.2016.7915934

  77. V. Gupta, G. Singh, M. Mittal and S. K. Pahuja, Fourier transform of untransformable signals using pattern recognition technique. 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, Jakarta, 6–9 2010 https://doi.org/10.1109/ACT.2010.11

  78. G. Singh, V. Gupta, S. Pundir, S. Sharma, An interesting difference between fourier transform & laplace transform. AMR 403–408, 114–119 (2011). https://doi.org/10.4028/www.scientific.net/amr.403-408.114

    Article  Google Scholar 

  79. J.C. Bansal, H. Sharma, S.S. Jadon, M. Clerc, Spider monkey optimisation algorithm for numerical optimisation. Memet. Comput. 6(1), 31–47 (2014)

    Article  Google Scholar 

  80. H. Sharma, G. Hazrati, J.C. Bansal, Spider monkey optimization algorithm. In: Evolutionary and Swarm Intelligence Algorithms. Studies in Computational Intelligence, vol 779, ed. by J. Bansal, P. Singh, N. Pal (Springer, Cham, 2019), https://doi.org/10.1007/978-3-319-91341-4_4

  81. J.C. Bansal, H. Sharma, S.S. Jadon, M. Clerc, Spider monkey optimisation algorithm for numerical optimisation. Memetic Comput. 6(1), 31–47 (2014)

    Article  Google Scholar 

  82. C. Nayak, S.K. Saha, R. Kar, D. Mandal, Optimal SSA based wideband digital differentiator design for cardiac QRS complex detection application. Int. J. Numer. Model 32(2), 1–25 (2018)

    Google Scholar 

  83. A.K. Dohare, V. Kumar, R. Kumar, An efficient new method for the detection of QRS in electrocardiogram. Comput. Electr. Eng. 40(5), 1717–1730 (2014)

    Article  Google Scholar 

  84. A. Ghaffari, M.R. Homaeinezhad, M. Akraminia, M. Atarod, M. Daevaeiha, A robust wavelet-based multilead electrocardiogram delineation algorithm. Med. Eng. Phys 31(10), 1219–1227 (2009)

    Article  Google Scholar 

  85. D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, C.P. Lim, A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput. Methods Prog. Biomed. 144, 61–75 (2017)

    Article  Google Scholar 

  86. M. Rakshit, S. Das, An efficient wavelet-based automated R-Peaks detection method using Hilbert transform. Biocybernetics Biomed. Eng. 37(3), 566–577 (2017)

    Article  Google Scholar 

  87. S. Yazdani, J.M. Vesin, Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Dig. Sig. Proc. 56, 100–109 (2016)

    Article  Google Scholar 

  88. B. Biswal, ECG signal analysis using modified S-transform. Healthc. Technol. Lett. 4(2), 68–72 (2017)

    Article  Google Scholar 

  89. F. Bouaziz, D. Boutana, M. Benidir, Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Proc. 8(7), 774–782 (2014)

    Article  Google Scholar 

  90. D.C. Rufas, J. Carrabina, Simple real-time QRS detector with the MaMeMi filter. Biomed. Signal Process. Control 21, 137–145 (2015)

    Article  Google Scholar 

  91. J. Pan, W.J. Tompkins, A real-time qrs detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985)

    Article  Google Scholar 

  92. P. Ray, K.K. Mandal, B.K. Mohanty, Analysis of electrocardiogram signal using computational intelligence technique. Appl. Artif. Intell. Tech. Eng. SIGMA 1, 519–532 (2018). https://doi.org/10.1007/978-981-13-1819-1

    Article  Google Scholar 

  93. V. Gupta, N.K. Saxena, A. Kanungo et al., PCA as an effective tool for the detection of R-peaks in an ECG signal processing. Int. J. Syst. Assur. Eng. Manag. (2022). https://doi.org/10.1007/s13198-022-01650-0

    Article  Google Scholar 

  94. P. Kumar, S. Shilpi, A. Kanungo et al., A novel ultra wideband antenna design and parameter tuning using hybrid optimization strategy. Wirel. Pers. Commun. 122, 1129–1152 (2022). https://doi.org/10.1007/s11277-021-08942-x

    Article  Google Scholar 

  95. J.C. Bansal, S. Singh, A better exploration strategy in grey wolf optimizer. J. Ambient Intell. Hum. Comput. 12, 1099–1118 (2021). https://doi.org/10.1007/s12652-020-02153-1

    Article  Google Scholar 

  96. J. Mayilsamy, D.P. Rangasamy, Load balancing in software-defined networks using spider monkey optimization algorithm for the internet of things. Wirel. Pers. Commun. 116, 23–43 (2021). https://doi.org/10.1007/s11277-020-07703-6

    Article  Google Scholar 

  97. J. Swanevelder, Cardiac physiology. In: Fundementals of Anaesthesis, ed. by C. Mowatt T. Lin, T. Smith, & C. Pinnock (Cambridge University Press, Cambridge, 2016) pp. 282–314 https://doi.org/10.1017/9781139626798.018

Download references

Funding

The authors have not obtained any type of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Ethics declarations

Conflicts of interest

All authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Mittal, M., Mittal, V. et al. ECG Signal Analysis based on the Spectrogram and Spider Monkey Optimisation Technique. J. Inst. Eng. India Ser. B 104, 153–164 (2023). https://doi.org/10.1007/s40031-022-00831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00831-6

Keywords

Navigation