[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Interdisciplinary interaction and integration have become major features of current science and technology development. Hence, ways to measure the strength of the interdisciplinary interactions between two given disciplines has become a crucial issue. In this study, we propose a novel framework for measuring interdisciplinary interaction that is based on both citation analysis and semantic analysis. Within the framework, direct citations combined with bibliographic coupling reflect citation relationship of interdisciplinary knowledge, while an LDA model combined with a word embedding model are used to explore the integration and diffusion of knowledge via semantic similarity. The strength of the interdisciplinary interactions is then assessed with an entropy weighting method. A case study on the interactions between Information & Library Science and six other disciplines demonstrates the efficacy and reliability of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. ITGInsight is a text mining and visualization software for bibliometric data, such as scientific papers, patents, reports and newspapers. Please visit the website for details: http://cn.itginsight.com.

  2. https://gephi.org/.

References

  • Adnani, H., Cherraj, M., & Bouabid, H. (2020). Similarity indexes for scientometric research: A comparative analysis. Malaysian Journal of Library and Information Science, 25(3), 31–48.

    Article  Google Scholar 

  • Ali, M., Jung, L. T., Hosam, O., Wagan, A. A., Shah, R. A., & Khayyat, M. (2020). A new text-based w-distance metric to find the perfect match between words. Journal of Intelligent and Fuzzy Systems, 38(3), 2661–2672.

    Article  Google Scholar 

  • Ayele, W. Y., & Akram, I. (2019). Identifying emerging trends and temporal patterns about self-driving cars in scientific literature. Computer Vision Conference (CVC), 2019(944), 355–372.

    Google Scholar 

  • Benito-Santos, A., & Theron Sanchez, R. (2019). Cross-domain visual exploration of academic corpora via the latent meaning of user-authored keywords. IEEE Access, 7, 98144–98160.

    Article  Google Scholar 

  • Bjorn, H. (2010). Interdisciplinarity and the intellectual base of literature studies: Citation analysis of highly cited monographs. Scientometrics, 86(3), 705–725.

    Google Scholar 

  • Boyack, K., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the Association for Information Science and Technology, 61, 2389–2404.

    Google Scholar 

  • Blei, D. M., Ng, A. Y., Jordan, M. I., & Lafferty, J. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3(4–5), 993–1022.

    MATH  Google Scholar 

  • Cao, J., Xia, T., Li, J., Zhang, Y., & Tang, S. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72(7), 1775–1781.

    Article  Google Scholar 

  • Carass, A., Roy, S., Gherman, A., Reinhold, J. C., Jesson, A., Arbel, T., Maier, O., Handels, H., Ghafoorian, M., Platel, B., & Birenbaum, A. (2020). Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis. Scientific Reports, 10(1), 1–19.

    Article  Google Scholar 

  • Caroline, S., Wagner, J., David, R., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26.

    Article  Google Scholar 

  • Chang, Y. W., & Huang, M. H. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of the American Society for Information Science and Technology, 63(1), 22–33.

    Article  Google Scholar 

  • Chen, L., Baird, A., & Straub, D. (2019). An analysis of the evolving intellectual structure of health information systems research in the information systems discipline. Journal of the Association for Information Systems, 20(8), 1023–1074.

    Article  Google Scholar 

  • Chi, R., & Young, J. (2013). The interdisciplinary structure of research on intercultural relations: A co-citation network analysis study. Scientometrics, 96(1), 147–171.

    Article  Google Scholar 

  • Dai, T., Zhu, L., Wang, Y., Zhang, H., Cai, X., & Zheng, Y. (2019). Joint model feature regression and topic learning for global citation recommendation. IEEE Access, 7, 1706–1720.

    Article  Google Scholar 

  • de Oliveira, T. M., Amaral, L., & Pacheco, R. C. S. (2018). Multi/inter/transdisciplinary assessment: A systemic framework proposal to evaluate graduate courses and research teams. Research Evaluation, 28, 23–36.

    Article  Google Scholar 

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.

    Article  Google Scholar 

  • Deng, S., Xia, S., & Fu, S. (2019). Measuring the Interdisciplinary Degree of Information Behavior Research. In 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL) (pp. 384–385).

  • Deng, S., & Xia, S. (2020). Mapping the interdisciplinarity in information behavior research: A quantitative study using diversity measure and co-occurrence analysis. Scientometrics, 124(4), 489–513.

    Article  MathSciNet  Google Scholar 

  • Edge, D. O. (1977). Why I am not a co-citationist. Society for Social Studies of Science Newsletter, 2, 13–19.

    Google Scholar 

  • Frank, R. (1988). Interdisciplinary: The first half century. In E. G. Stanley & T. F. Hoad (Eds.), WORDS: For Robert Burchfield’s sixty fifth birthday (pp. 91–101). DS Brewer.

    Google Scholar 

  • Gullbekk, E., & Byström, K. (2019). Becoming a scholar by publication: PhD students citing in interdisciplinary argumentation. Journal of Documentation, 75(2), 247–269.

    Article  Google Scholar 

  • Guo, Y., Fei, R., Zhang, K., Tang, Y., & Hu, B. (2020). Developing a clustering structure with consideration of cross-domain text classification based on deep sparse auto-encoder. In 2020 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 2477–2483).

  • Hammarfelt, B. (2011). Interdisciplinarity and the intellectual base of literature studies: Citation analysis of highly cited monographs. Scientometrics, 86(3), 705–725.

    Article  Google Scholar 

  • Heo, G. E., Kang, K. Y., Song, M., & Lee, J. H. (2017). Analyzing the field of bioinformatics with the multi-faceted topic modeling technique. BMC Bioinformatics, 18(7), 251.

    Article  Google Scholar 

  • Hofmann, T. (2017). Probabilistic latent semantic indexing. ACM SIGIR Forum, 51(2), 211–218.

    Article  Google Scholar 

  • Holland, G. A. (2008). Information science: An interdisciplinary effort? Journal of Document, 64(1), 7–23.

    Article  Google Scholar 

  • Hu, K., Qi, K., Yang, S., et al. (2018a). Identifying the “Ghost City” of domain topics in a keyword semantic space combining citations. Scientometrics, 114, 1141–1157.

    Article  Google Scholar 

  • Hu, K., Wu, H., Qi, K., Yu, J., Yang, S., et al. (2018b). A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model. Scientometrics, 114(3), 1031–1068.

    Article  Google Scholar 

  • Hu, W., Wu, L., Jian, M., Chen, Y., & Yu, H. (2021). Cosine metric supervised deep hashing with balanced similarity. Neurocomputing, 448, 94–105.

    Article  Google Scholar 

  • Huang, Y., Glänzel, W., & Zhang, L. (2021). Tracing the development of mapping knowledge domains. Scientometrics, 126(7), 6201–6224.

    Article  Google Scholar 

  • Huang, L., et al. (2021b). Tracking the dynamics of co-word networks for emerging topic identification. Technological Forecasting and Social Change, 170, 120944.

    Article  Google Scholar 

  • Huang, M. H., & Chang, Y. W. (2012). A comparative study of interdisciplinary changes between information science and library science. Scientometrics, 91(3), 789–803.

    Article  MathSciNet  Google Scholar 

  • Huang, X. Y., & Ying, J. B. (2020). Research on the training mode of compound innovative postgraduates based on interdisciplinary integration: Taking Human Geography as an example. Education Modernization, 7(34), 20–24.

    Google Scholar 

  • Huang, Y., Zhang, L., Sun, B. B., Wang, Z. N., & Zhu, D. H. (2019). Interdisciplinarity measurement: External knowledge integration, internal information convergence and research activity pattern. Studies in Science of Science, 37(1), 25–35.

    Google Scholar 

  • Isler, Y., & Kuntalp, M. (2010). Heart rate normalization in the analysis of heart rate variability in congestive heart failure. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 224(3), 453.

    Article  Google Scholar 

  • Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Soci´et´e Vaudoise des Sciences Naturelles, 37(1), 547–579.

  • Karunan, K., Lathabai, H. H., & Prabhakaran, T. (2017). Discovering interdisciplinary interactions between two research fields using citation networks. Scientometrics, 113, 335–367.

    Article  Google Scholar 

  • Ke, Q. (2019). Identifying translational science through embeddings of controlled vocabularies. Journal of the American Medical Informatics Association, 26(6), 516–523.

    Article  Google Scholar 

  • Kim, M., Baek, I., & Song, M. (2018). Topic diffusion analysis of a weighted citation network in biomedical literature. Journal of the American Society for Information Science and Technology, 69(2), 329–342.

    Google Scholar 

  • Kim, S. K., & Oh, J. (2018). Information science techniques for investigating research areas: A case study in telecommunications policy. The Journal of Supercomputing, 74(12), 6691–6718.

    Article  Google Scholar 

  • Langer, M., et al. (2021). What do we want from Explainable Artificial Intelligence (XAI)? A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 296, 103473.

    Article  MathSciNet  MATH  Google Scholar 

  • Le, T. T. N., & Phuong, T. V. X. (2020). Privacy preserving jaccard similarity by cloud-assisted for classification. Wireless Personal Communications, 112(3), 1875–1892.

    Article  Google Scholar 

  • Lee, C., Garbett, A., Wang, J., Hu, B., & Jackson, D. (2019). Weaving the Topics of CHI: Using citation network analysis to explore emerging trends. In Extended Abstracts of the 2019 CHI Conference (pp 1–6).

  • Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In Advances in Neural Information Processing Systems (pp. 2177–2185).

  • Leydesdorff, L. (2008). On the normalization and visualization of author co-citation data salton’s cosine versus the jaccard index. Journal of the American Society for Information Science & Technology, 59(1), 77–85.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.

    Article  Google Scholar 

  • Leydesdorff, L., & Ivanova, I. (2020). The measurement of “interdisciplinarity” and “synergy” in scientific and extra-scientific collaborations. Journal of the Association for Information Science and Technology, 72(4), 387–402.

    Article  Google Scholar 

  • Lin, L., Li, X., Chao, L., Zhao, S., & University, Q. N. (2017). Research on trade dynamic impact and diffusion model of cross disciplinary knowledge: a case study of library and information science and management. Journal of Intelligence, 36(2), 182–186+158.

  • Liu, Y. M., Yang, L., & Chen, M. (2021). A new citation concept: Triangular citation in the literature. Journal of Informetrics, 15(2), 1751–1777.

    Article  Google Scholar 

  • Loureiro, S. M. C., Guerreiro, J., & Ali, F. (2020). 20 years of research on virtual reality and augmented reality in tourism context: A text-mining approach. Tourism Management, 77, 104028.

    Article  Google Scholar 

  • Lu, K., & Wolfram, D. (2012). Measuring author research relatedness: A comparison of word-based, topic-based, and author cocitation approaches. Journal of the American Society for Information Science and Technology, 63(10), 1973–1986.

    Article  Google Scholar 

  • Lu, W., Li, X., Liu, Z., & Cheng, Q. (2019). How do author-selected keywords function semantically in scientific manuscripts? Knowledge Organization, 46(6), 403–418.

    Google Scholar 

  • Ma, R., Yan, X., & Shen, N. (2019). Direct measurement of the degree of interdisciplinarity. Journal of the China Society for Scientific and Technical Information, 38(7), 688–696.

    Google Scholar 

  • Mikolov, T. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 26, 3111–3119.

    Google Scholar 

  • Academies, N. (2005). Facilitating interdisciplinary research. National Academies Press.

    Google Scholar 

  • Nichols, L. (2014). A topic model approach to measuring interdisciplinarity at the National Science Foundation. Scientometrics, 100, 741–754.

    Article  Google Scholar 

  • Mugabushaka, A. M., Kyriakou, A., & Papazoglou, T. (2016). Bibliometric indicators of interdisciplinarity: The potential of the Leinster-Cobbold diversity indices to study disciplinary diversity. Scientometrics, 107, 593–607.

    Article  Google Scholar 

  • Onan, A. (2019). Two-stage topic extraction model for bibliometric data analysis based on word embeddings and clustering. IEEE Access, 7, 145614–145633.

    Article  Google Scholar 

  • Ozkaya, I. (2020). The behavioral science of software engineering and human-machine teaming. IEEE Software, 37(6), 3–6.

  • Pan, J. F., Zhang, X. L., & Wang, X. M. (2013). Mapping science structure 2012 (pp. 13–18). Science Press.

    Google Scholar 

  • Pierce, S. J. (2012). Boundary crossing in research literatures as a means of interdisciplinary information transfer. Journal of the American Society for Information Science, 50(3), 271–279.

    Article  Google Scholar 

  • Rafols, I., & Meyer, M. (2009). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Article  Google Scholar 

  • Raimbault, J. (2019). Exploration of an interdisciplinary scientific landscape. Scientometrics., 119, 617–641.

    Article  Google Scholar 

  • Salton, G., & McGill, M. J. (1986). Introduction to modern information retrieval. McGrawHill.

    MATH  Google Scholar 

  • Shang, X. L. (2018). Research on interdisciplinary potential topic identification based on LDA: Taking Digital Library as an example. Information Science, 36(6), 57–62.

    Google Scholar 

  • Shi, S. (2018). Interdisciplinary knowledge exchange based on CTM: taking information science & library science (LIS) and computer information system (CIS) as examples. Information Studies: Theory & Application, 41(07), 99–104+71.

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. SPRU Working Paper Series 4(15), 707–719.

  • Wang, F., & Li, H. (2021). On the use of the maximum entropy method for reliability evaluation involving stochastic process modeling. Structural Safety, 88, 102028.

    Article  Google Scholar 

  • Wang, L., Notten, A., & Surpatean, A. (2013). Interdisciplinarity of nano research fields: A keyword mining approach. Scientometrics, 94(3), 877–892.

    Article  Google Scholar 

  • Wang, X. F., Zhang, S., Liu, Y. Q., Du, J., & Huang, H. (2021). How pharmaceutical innovation evolves: The path from science to technological development to marketable drugs. Technological Forecasting and Social Change, 167, 120698.

    Article  Google Scholar 

  • Wang, Y., Liu, Z., & Sun, M. (2015). Incorporating linguistic knowledge for learning distributed word representations. PLOS ONE, 10(4), e0118437.

    Article  Google Scholar 

  • Wang, Z., Ma, L., & Zhang, Y. (2016). A hybrid document feature extraction method using latent dirichlet allocation and Word2Vec. In IEEE First International Conference on Data Science in Cyberspace (DSC) (pp. 98–103).

  • Wei, X., & Croft, W. B. (2006). LDA-based document models for ad-hoc retrieval. Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR '06). 6th August to 11st August, 2006 (pp. 178–185). University of Massachusetts Amherst

  • Xu, J., Ding, Y., Bu, Y., Deng, S., Yu, C., Zou, Y., & Madden, A. (2019). Interdisciplinary scholarly communication: An exploratory study for the field of joint attention. Scientometrics, 119(3), 1597–1619.

    Article  Google Scholar 

  • Xu, H., Guo, T., Yue, Z., Ru, L., & Fang, S. (2016). Interdisciplinary topics of information science: A study based on the terms interdisciplinarity index series. Scientometrics, 106, 583–601.

    Article  Google Scholar 

  • Xu, S., Chao, L., & Zhang, C. (2017). Measurement of interdisciplinary research from the perspective of terminology citation: Six disciplines on PLOS ONE. Journal of the China Society for Scientific and Technical Information, 36(8), 809–820.

    Google Scholar 

  • Yang, L., Han, L., & Liu, N. (2019). A new approach to journal co-citation matrix construction based on the number of co-cited articles in journals. Scientometrics, 120(2), 507–517.

    Article  Google Scholar 

  • Yu, D., Xu, Z., Pedrycz, W., & Wang, W. (2017). Information sciences 1968–2016: A retrospective analysis with text mining and bibliometric. Information Sciences, 418–419, 619–634.

    Article  Google Scholar 

  • Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology, 67(5), 1257–1265.

    Article  Google Scholar 

  • Zhang, Y., Lu, J., Liu, F., Liu, Q., Porter, A., Chen, H., & Zhang, G. (2018). Does deep learning help topic extraction? A kernel k-means clustering method with word embedding. Journal of Informetrics, 12(4), 1099–1117.

    Article  Google Scholar 

  • Zhang, Y., Porter, A. L., Hu, Z., Guo, Y., & Newman, N. C. (2014). “term clumping” for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change, 85, 26–39.

    Article  Google Scholar 

  • Zhou, Y., Du, J., Liu, Y., et al. (2018). Identifying technology evolution pathways by integrating citation network and text mining. Journal of Intelligence, 37(10), 76–81.

    Google Scholar 

  • Zhou, Y., Du, J., Liu, Y., & Zheng, W. (2019a). Identifying technology evolution pathways by integrating citation network and text mining. In 2019a IEEE Technology & Engineering Management Conference (TEMSCON).

  • Zhou, X., Huang, L., Zhang, Y., & Yu, M. (2019b). A hybrid approach to detecting technological recombination based on text mining and patent network analysis. Scientometrics, 121(2), 699–737.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China [Grant No. 71673086; 71774013]. Our heartfelt appreciation goes to Changtian Wang for his contributions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Cai, Y., Zhao, E. et al. Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis. Scientometrics 127, 6733–6761 (2022). https://doi.org/10.1007/s11192-022-04401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-022-04401-x

Keywords

Navigation