[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Information behavior research is an interdisciplinary field in essence due to the investigation of interdisciplinary in previous work. To track the changes in interdisciplinarity of this field, more efforts should be put on basis of previous work. Based on publications searched from Web of Science from 2000 to 2018, we explored the interdisciplinarity of this field drawing on network analysis and diversity measure. Findings showed that although variety of disciplines in this field augmented significantly, the distribution of disciplines is unbalanced and concentrated on some dominant disciplines such as computer science, engineering, psychology, social science and medicine, etc. Relationships among disciplines have evolved over time and mainly focused on neighboring disciplines instead of distinct disciplines. Computer science, engineering, psychology, health science and social science function as intermediate disciplines connecting distinct disciplinary groups. Besides, the measurement using diversity measure shows that interdisciplinary degree of this field appears to decrease. This study contributes to the evolution and measurement of interdisciplinarity of information behavior research, which has implications for researchers and practitioners in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramo, G., D’Angelo, C. A., & Zhang, L. (2018). A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list. Journal of Informetrics,12(4), 1182–1193.

    Google Scholar 

  • Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology,54(6), 550–560.

    Google Scholar 

  • Anderson, K. E. (2018). Getting acquainted with social networks and apps: Combating fake news on social media. Library Hi Tech News,35(3), 1–6.

    Google Scholar 

  • Beauchamp, M. A. (1965). An Improved Index of Centrality. Behavioral Science,10(2), 161–163.

    Google Scholar 

  • Bellanca, L. (2009). Measuring interdisciplinary research: Analysis of co-authorship for research staff at the University of York. Bioscience Horizons,2(2), 99–112.

    Google Scholar 

  • Besselaar, P. V. D., & Heimeriks, G. (2001). Disciplinary, multidisciplinary, interdisciplinary concepts and indicators. Community Development Journal,38(4), 344–357.

    Google Scholar 

  • Boyack, K. W. (2004). Mapping knowledge domains: Characterizing PNAS. Proceedings of the National Academy of Sciences of the United States of America,101(2), 5192–5199.

    Google Scholar 

  • Buente, W., & Robbin, A. (2008). Trends in Internet information behavior, 2000–2004. Journal of the Association for Information Science and Technology,59(11), 1743–1760.

    Google Scholar 

  • Burnett, G., & Buerkle, H. (2006). Information exchange in virtual communities: A comparative study. Journal of Computer-Mediated Communication,9(2), 123–141.

    Google Scholar 

  • Burnett, G., & Erdelez, S. (2010). Forecasting the next 10 years in information behavior research: A fish bowl dialogue. Bulletin of the American Society for Information Science and Technology,36(3), 44–48.

    Google Scholar 

  • Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics,22(1), 155–205.

    Google Scholar 

  • Cambrosio, A., Limoges, C., Courtial, J. P., & Laville, F. (1993). Historical scientometrics? Mapping over 70 years of biological safety research with coword analysis. Scientometrics,27(2), 119–143.

    Google Scholar 

  • Case, D. O. (2006). Information behavior. Annual Review of Information Science & Technology,40(1), 293–327.

    Google Scholar 

  • Cassi, L., Mescheba, W., & de Turckheim, É. (2014). How to evaluate the degree of interdisciplinarity of an institution. Scientometrics,101(3), 1871–1895.

    Google Scholar 

  • Champeimont, R. L., Mescheba, W., & De Turckheim, É. (2017). Analysing institutions interdisciplinarity by extensive use of Rao-stirling diversity index Lorenzo Cassi. PLoS ONE,12(1), e0170296. https://doi.org/10.1371/journal.pone.0170296.

    Article  Google Scholar 

  • Chen, S., Arsenault, C., Gingras, Y., & Larivière, V. (2015). Exploring the interdisciplinary evolution of a discipline: The case of biochemistry and molecular biology. Scientometrics,102(2), 1307–1323.

    Google Scholar 

  • Chen, C., Li, Q., Deng, Z., Chiu, K., & Wang, P. (2018). The preferences of Chinese LIS journal articles in citing works outside the discipline. Journal of Documentation,74(1), 99–118.

    Google Scholar 

  • Commisso, C. (2017). The post-truth archive: Considerations for archiving context in fake news repositories. Preservation, Digital Technology and Culture,46(3), 99–102.

    Google Scholar 

  • Cooke, N. A. (2017). Posttruth, truthiness, and alternative facts: Information Behavior and critical information consumption for a new age. The Library Quarterly,87(3), 211–221.

    MathSciNet  Google Scholar 

  • Cummings, J. N., & Kraut, R. E. (2002). Domesticating computers and the internet. The Information Society,18(3), 221–231.

    Google Scholar 

  • Ding, Y., Chowdhury, G. G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing and Management,37(6), 817–842.

    MATH  Google Scholar 

  • Dork, M., Carpendale, S., & Williamson, C. (2011). The information flaneur: A fresh look at information seeking. In Proceedings of the 2011 annual conference on human factors in computing systems. https://doi.org/10.1145/1978942.1979124.

  • Eungi, K. (2017). The trends in information behavior research, 2000–2016: The emergence of new topical area. Journal of the Korean BIBLIA Society for Library and Information Science,28(2), 119–135.

    Google Scholar 

  • Feng, Y., & Agosto, D. (2019). From health to performance: Amateur runners’ personal health information management with activity tracking technology. Aslib Journal of Information Management,71(2), 217–240.

    Google Scholar 

  • Fisher, K. E., & Julien, H. (2009). Information behavior. Annual Review of Information Science and Technology,43(1), 1–73.

    Google Scholar 

  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry,40(1), 35–41.

    Google Scholar 

  • Ghaddar, S., Valerio, M. A., Garcia, C. M., & Hansen, L. (2012). Adolescent health literacy: the importance of credible sources for online health information. Journal of School Health,82(1), 28–36.

    Google Scholar 

  • Gibson, C., & Jacobson, T. E. (2018). Habits of mind in an uncertain information world. Reference and User Services Quarterly,57(3), 183–192.

    Google Scholar 

  • Given, L. M., Julien, H., & Case, D. (2012). The evolution of information behavior research: Looking back to see the future. Proceedings of the ASIST Annual Meeting,49(1), 1–2.

    Google Scholar 

  • González-Teruel, A., Gonzale-Zalcaide, G., Barrios, M., & Abadgarcia, M. (2015). Mapping recent information behavior research: An analysis of co-authorship and co-citation networks. Scientometrics,103(2), 687–705.

    Google Scholar 

  • Grauwin, S., & Jensen, P. (2011). Mapping scientific institutions. Scientometrics,89(3), 943–954.

    Google Scholar 

  • Greifeneder, E. (2014). Trends in information behaviour research. Information Research,19(4), 159–170.

    Google Scholar 

  • Haunschild, R. (2015). Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. Journal of Scientometric Research,4(1), 40–49.

    Google Scholar 

  • He, Q. (1999). Knowledge discovery through co-word analysis. Library Trends,48(1), 133–159.

    Google Scholar 

  • Hernandez, C. (2017). Fake news and information literacy: Creating resources to develop source evaluation skills at the University of Oregon Libraries. OLA Quarterly,23(1), 13–15.

    Google Scholar 

  • Hu, J., Huang, R., & Wang, Y. (2018). Geographical visualization of research collaborations of library science in China. Electronic Library,36(3), 414–429.

    Google Scholar 

  • Hu, J., & Zhang, Y. (2018). Measuring the interdisciplinarity of Big Data research: A longitudinal study. Online Information Review,42(5), 681–696.

    Google Scholar 

  • Huang, M. H., & Chang, Y. W. (2011). A study of interdisciplinarity in information science: Using direct citation and co-authorship analysis. Journal of Information Science,37(4), 369–378.

    Google Scholar 

  • Ioannidis, J. P. A., Boyack, K. W., & Klavans, R. (2014). Estimates of the continuously publishing core in the scientific workforce. PLoS ONE,9(7), e101698. https://doi.org/10.1371/journal.pone.0101698.

    Article  Google Scholar 

  • Jost, L. (2006). Entropy and diversity. Oikos,113(2), 363–375.

    Google Scholar 

  • Julien, H., & O’Brien, M. (2014). Information behaviour research: Where have we been, where are we going? Canadian Journal of Information and Library Science,38(4), 239–250.

    Google Scholar 

  • Julien, H., Pecoskie, J. J. L., & Reed, K. (2011). Trends in information behavior research, 1999–2008: A content analysis. Library and Information Science Research,33(1), 19–24.

    Google Scholar 

  • Karlovčec, M., & Mladenić, D. (2015). Interdisciplinarity of scientific fields and its evolution based on graph of project collaboration and co-authoring. Scientometrics,102(1), 433–454.

    Google Scholar 

  • Kim, S. U., & Syn, S. Y. (2014). Research trends in teens’ health information behavior: A review of the literature. Health Information and Libraries Journal,31(1), 4–19.

    Google Scholar 

  • Klein, J. T. (2008). Evaluation of interdisciplinary and transdisciplinary research: A literature review. American Journal of Preventive Medicine,35(2), 116–123.

    Google Scholar 

  • Levitt, J. M., & Thelwall, M. (2008). Is multidisciplinary research more highly cited? A macro level study. Journal of the American Society for Information Science and Technology,59(12), 1973–1984.

    Google Scholar 

  • Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinary of scientific journals. Journal of the American Society for Information Science and Technology,58(9), 1303–1319.

    Google Scholar 

  • Leydesdorff, L., & Probst, C. (2009). The delineation of an interdisciplinary specialty in terms of a journal set: The case of communication studies. Journal of the American Society for Information Science and Technology,60(8), 1709–1718.

    Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics,5(1), 87–100.

    Google Scholar 

  • Liu, Y., Li, H., Goncalves, J., Kostakos, V., & Xiao, B. (2016). Fragmentation or cohesion? Visualizing the process and consequences of information system diversity, 1993–2012. European Journal of Information Systems,25(6), 509–533.

    Google Scholar 

  • Luzar, B., Levnajic, Z., Povh, J., & Perc, M. (2014). Community structure and the evolution of interdisciplinarity in Slovenia's scientific collaboration network. PLoS ONE,9(4), e94429. https://doi.org/10.1371/journal.pone.0094429.

    Article  Google Scholar 

  • Middleton, L., Hall, H., & Raeside, R. (2019). Applications and applicability of Social Cognitive Theory in information science research. Journal of Librarianship and Information Science,51(4), 927–937.

    Google Scholar 

  • Morillo, F., Bordons, M., & Gómez, I. (2003). Interdisciplinary in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology,54(13), 1237–1249.

    Google Scholar 

  • Mugabushaka, A. M., Kyriakou, A., & Papazoglou, T. (2016). Bibliometric indicators of interdisciplinarity: The potential of the Leinster-Cobbold diversity indices to study disciplinary diversity. Scientometrics,107(2), 593–607.

    Google Scholar 

  • Muñoz-Leiva, M. I., Viedma-del-Jesús, J.-F., & López-Herrera, A. G. (2012). An application of co-word analysis and bibliometric maps for detecting the most highlighting themes in the consumer behaviour research from a longitudinal perspective. Quality and Quantity,46(4), 1077–1095.

    Google Scholar 

  • Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics,72(1), 117–147.

    Google Scholar 

  • Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics,81(3), 719–745.

    Google Scholar 

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics,82(2), 263–287.

    Google Scholar 

  • Rogers, D. L. (1974). Sociometric analysis of interorganizational relations: Application of theory and measurement. Rural Sociology,39(4), 487–503.

    Google Scholar 

  • Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies,4(1), 17–40.

    Google Scholar 

  • Shen, L., Xiong, B., & Hu, J. (2017). Research status, hotspots and trends for information behavior in China using bibliometric and co-word analysis. Journal of Documentation,73(4), 618–633.

    Google Scholar 

  • Sosulski, N. W., & Tyckoson, D. A. (2018). Reference in the age of disinformation. Reference and User Services Quarterly,57(3), 178–182.

    Google Scholar 

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface,4(15), 707–719.

    Google Scholar 

  • Sullivan, M. C. (2019). Libraries and fake news: What’s the problem? what’s the plan? Communications in Information Literacy,13(1), 91–113.

    Google Scholar 

  • Torabi Asr, F., & Taboada, M. (2019). Big Data and quality data for fake news and misinformation detection. Big Data and Society,6(1), 1–14.

    Google Scholar 

  • Viedmadeljesus, M. I., Perakakis, P., Munoz, M. A., Lopezherrera, A. G., & Vila, J. (2011). Sketching the first 45 years of the journal Psychophysiology (1964–2008): A co-word-based analysis. Psychophysiology,48(8), 1029–1036.

    Google Scholar 

  • Van Rijnsoever, F. J., & Hessels, L. K. (2011). Factors associated with disciplinary and interdisciplinary research collaboration. Research Policy,40(3), 463–472.

    Google Scholar 

  • Vakkari, P. (2008). Trends and approaches in information behavior research. Information Research,13(4), 361–374.

    Google Scholar 

  • Vishwanath, A., Xu, W., & Ngoh, Z. (2018). How people protect their privacy on facebook: A cost-benefit view. Journal of the Association for Information Science and Technology,69(5), 700–709.

    Google Scholar 

  • Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics,5(1), 14–26.

    Google Scholar 

  • Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology,63(12), 2378–2392.

    Google Scholar 

  • Wang, J., Bart, T., Wolfgang, G., & Smalheiser, N. R. (2015). Interdisciplinarity and impact: Distinct effects of variety, balance, and disparity. PLoS ONE,10(5), e0127298. https://doi.org/10.1371/journal.pone.0127298.

    Article  Google Scholar 

  • Wettler, M., & Rapp, R. (1993). Computation of word associations based on co-occurrences of words in large corpora. In Proc. of the 1st workshop on very large corpora: academic and industrial perspectives. https://en.scientificcommons.org/42994748.

  • Wilson, T. D. (1994). Information needs and uses: fifty years of progress. In Fifty years of information progress: a Journal of Documentation review. Retrieved from https://informationr.net/tdw/publ/papers/1994FiftyYears.

  • Wilson, T. D. (1997). Information behaviour: An interdisciplinary perspective. Information Processing & Management,33(4), 551–572.

    Google Scholar 

  • Wilson, T. D. (2000). Human information behavior. Informing Science,3(2), 49–56.

    Google Scholar 

  • Xu, H., Guo, T., Yue, Z., Ru, L., & Fang, S. (2016). Interdisciplinary topics of information science: A study based on the terms interdisciplinarity index series. Scientometrics,106(2), 583–601.

    Google Scholar 

  • Yang, C. H., Park, H. W., & Heo, J. (2010). A network analysis of interdisciplinary research relationships: The Korean government’s R&D grant program. Scientometrics,83(1), 77–92.

    Google Scholar 

  • Ying, H., Lin, Z., Bei-Bei, S., et al. (2019). Interdisciplinarity measurement: External knowledge integration, internal information convergence and research activity pattern. Studies in Science of Science,37(1), 25–35.

    Google Scholar 

  • Zhang, L., Rousseau, R., & GlNzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology,67(5), 1257–1265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudi Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Xia, S. Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis. Scientometrics 124, 489–513 (2020). https://doi.org/10.1007/s11192-020-03465-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-020-03465-x

Keywords

Navigation