[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analysis of a time-limited service priority queueing system with exponential timer and server vacations

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a multi-class priority queueing system with a non-preemptive time-limited service controlled by an exponential timer and multiple (or single) vacations. By reducing the service discipline to the Bernoulli schedule, we obtain an expression for the Laplace-Stieltjes transform (LST) of the waiting time distribution via an iteration procedure, and a recursive scheme to calculate the first two moments. It is noted that we have to select embedded Markov points based on the service beginning epochs instead of the service completion epochs adopted for most of M/G/1 queueing analyses. Through the queue-length analysis, we obtain a decomposition form for the LST of the waiting time in each queue having the exhaustive service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanc, J.P.C., van der Mei, R.D.: Optimization of polling systems with Bernoulli schedules. Perform. Eval. 22, 139–158 (1995)

    Article  Google Scholar 

  2. Borst, S.C., Boxma, O.J., Levy, H.: The use of service limits for efficient operation of multistation single-medium communication systems. IEEE Trans. Netw. 3, 602–612 (1995)

    Article  Google Scholar 

  3. Boxma, O.J.: Workloads and waiting times in single-server systems with multiple customer classes. Queueing Syst. 5, 185–214 (1989)

    Article  Google Scholar 

  4. Brill, P.H.: Level crossing methods. In: Gass, S.I., Harris, C.M. (eds.) Encyclopedia of Operations Research and Management Science, Centennial edn. pp. 448–450. Kluwer Academic, Dordrecht (2001)

    Chapter  Google Scholar 

  5. Coffman, E.G., Fayolle, G., Mitrani, I.: Two queues with alternating service periods. In: Courtois, P.-J., Latouche, G. (eds.) Performance ’87, pp. 227–239. Elsevier/North-Holland, Amsterdam (1987)

    Google Scholar 

  6. Cohen, J.W.: On up- and downcrossings. J. Appl. Probab. 14, 405–410 (1977)

    Article  Google Scholar 

  7. Eliazar, I., Fibich, G., Yechiali, U.: A communication multiplexer problem: two alternating queues with dependent randomly-timed gated regime. Queueing Syst. 42, 325–353 (2002)

    Article  Google Scholar 

  8. Feng, W., Kowada, M., Adachi, K.: A two-queue model with Bernoulli service schedule and switching times. Queueing Syst. 30, 405–434 (1998)

    Article  Google Scholar 

  9. Finch, P.D.: On the distribution of queue size in queueing problems. Acta Math. Sci. Acad. Hung. 10, 327–336 (1959)

    Article  Google Scholar 

  10. Fuhrmann, S.W., Cooper, R.B.: Stochastic decompositions in the M/G/1 queue with generalized vacations. Oper. Res. 33, 1117–1129 (1985)

    Article  Google Scholar 

  11. Katayama, T.: Priority queues with Bernoulli schedules. In: Ramaswami, V., Wirth, P.E. (eds.) Teletraffic Contributions for the Information Age, pp. 309–318. Elsevier, Amsterdam (1997)

    Google Scholar 

  12. Katayama, T., Kobayashi, K.: Analysis of a nonpreemptive priority queue with exponential timer and server vacations. Perform. Eval. 64, 495–506 (2007)

    Article  Google Scholar 

  13. Katayama, T., Kobayashi, K., Nakagawa, K.: System delay analysis for a nonpreemptive time-limited service queueing system with two types of vacations and its application. In: Charzinski, J., Lehnert, R., Tran-Gia, P. (eds.) Providing Quality of Service in Heterogeneous Environments, pp. 591–600. Elsevier, Amsterdam (2003)

    Google Scholar 

  14. Kesten, H., Runnenburg, J.Th.: Priority in waiting-line problems, I and II. Proc. Koninkl. Nederl. Akad. Wetensch. Ser. A 60, 312–336 (1957)

    Google Scholar 

  15. Kleinrock, L., Finkelstein, R.P.: Time dependent priority queues. Oper. Res. 15, 104–116 (1967)

    Google Scholar 

  16. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, vol. 32. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  17. Leung, K.K., Eisenberg, M.: A single-server queue with vacations and non-gated time-limited service. Perform. Eval. 12, 115–125 (1991)

    Article  Google Scholar 

  18. Leung, K.K., Lucantoni, D.M.: Two vacation models for token-ring networks where service is controlled by timers. Perform. Eval. 20, 165–184 (1994)

    Article  Google Scholar 

  19. Miyazawa, M.: Decomposition formulas for single server queues with vacations: a unified approach by the rate conservation law. Stoch. Models 10, 389–413 (1994)

    Article  Google Scholar 

  20. Takács, L.: Introduction to the Theory of Queues. Oxford University Press, New York (1962)

    Google Scholar 

  21. Takagi, H.: Queueing Analysis, Vol. 1: A Foundation of Performance Evaluation. North-Holland, Amsterdam (1991)

    Google Scholar 

  22. Takagi, H.: Queueing analysis of polling models: Progress in 1990–1994. In: Dshalalow, J.H. (eds.) Frontiers in Queueing, pp. 119–146. CRC Press, Boca Raton (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Katayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katayama, T. Analysis of a time-limited service priority queueing system with exponential timer and server vacations. Queueing Syst 57, 169–178 (2007). https://doi.org/10.1007/s11134-007-9055-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-007-9055-4

Keywords

Mathematics Subject Classification (2000)