[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the large-amplitude (geometrically nonlinear) vibrations of rotating, laminated composite circular cylindrical shells subjected to radial harmonic excitation in the neighborhood of the lowest resonances are investigated. Nonlinearities due to large-amplitude shell motion are considered using the Donnell’s nonlinear shallow-shell theory, with account taken of the effect of viscous structure damping. The dynamic Young’s modulus which varies with vibrational frequency of the laminated composite shell is considered. An improved nonlinear model, which needs not to introduce the Airy stress function, is employed to study the nonlinear forced vibrations of the present shells. The system is discretized by Galerkin’s method while a model involving two degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the forced vibration responses of the two-degrees-of-freedom system. The stability of analytical steady-state solutions is analyzed. Results obtained with analytical method are compared with numerical simulation. The agreement between them bespeaks the validity of the method developed in this paper. The effects of rotating speed and some other parameters on the nonlinear dynamic response of the system are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(c\) :

The coefficient of damping of the shell

\(A_{ij} \) :

Tensile stiffness

\(B_{ij} \) :

Coupling stiffness

\(D_{ij} \) :

Bending stiffness

\(E_k (\omega )\) :

The Young’s modulus of each lamina of the shell

\(F(t)\) :

External excitation

\(h\) :

The wall thickness of the shell

\(L\) :

The length of the shell

\(m \) :

The number of axial half-waves

\(n\) :

The number of circumferential waves

\(R\) :

The middle-surface radius of the shell

\(t \) :

Time

\(\delta \) :

The Dirac delta function

\(\mu _k \) :

The Poisson’s ratio of each lamina of the shell

\(\rho _k \) :

The mass density of each lamina of the shell

\(\omega \) :

The radian frequency of external excitation

\(\omega _{m,n} \) :

The linear radian frequency corresponding to the mode (\(m,\,n\))

\(\omega _n \) :

The angular velocity of the shell

References

  1. Hajianmaleki, M., Qatu, M.S.: Mechanics of Composite Beams, Advances in Composite Materials-Analysis of Naturally and Man-made Materials. InTech Publications, Croatia (2011)

    Google Scholar 

  2. Hajianmaleki, M., Qatu, M.S.: Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions. Compos. Part B Eng. 43, 1767–1775 (2012)

    Article  Google Scholar 

  3. Hajianmaleki, M., Qatu, M.S.: A rigorous beam model for static and vibration analysis of generally laminated composite thick beams and shafts. Int. J. Veh. Noise Vib. 8, 166–184 (2012)

    Article  Google Scholar 

  4. Hajianmaleki, M., Qatu, M.S.: Vibrations of straight and curved composite beams: a review. Compos. Struct. 100, 218–232 (2013)

    Article  Google Scholar 

  5. Qatu, M.S., Abu-Shams, M., Hajianmaleki, M.: Application of laminated composite materials in vehicle design: theories and analyses of composite beams. SAE Int. J. Passeng. Cars Mech. Syst. 6, 1276–1282 (2013)

    Google Scholar 

  6. Qatu, M.S.: Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated composite shells. Appl. Mech. Rev. 55, 325–350 (2002)

    Article  Google Scholar 

  7. Qatu, M.S., Sullivan, R.W., Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93, 14–31 (2010)

    Article  Google Scholar 

  8. Jafari, A.A., Khalili, S.M.R., Azarafza, R.: Transient dynamic response of composite circular cylindrical shells under radial impulse load and axial compressive loads. Thin-Wall Struct. 43, 1763–1786 (2005)

    Article  Google Scholar 

  9. Liew, K.M., Hu, Y.G., Zhao, X., Ng, T.Y.: Dynamic stability analysis of composite laminated cylindrical shells via the mesh-free kp-Ritz method. Comput. Methods Appl. Mech. Eng. 196, 147–160 (2006)

    Article  MATH  Google Scholar 

  10. Matsunaga, H.: Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory. Int. J. Mech. Sci. 49, 1060–1075 (2007)

    Article  Google Scholar 

  11. Toorani, M.H.: Dynamics of the geometrically non-linear analysis of anisotropic laminated cylindrical shells. Int. J. Nonlinear Mech. 38, 1315–1335 (2003)

    Article  MATH  Google Scholar 

  12. Dong, K., Wang, X.: Influences of large deformation and rotary inertia on wave propagation in piezoelectric cylindrically laminated shells in thermal environment. Int. J. Solids Struct. 43, 1710–1726 (2006)

    Article  MATH  Google Scholar 

  13. Dong, K., Wang, X.: Wave propagation characteristics in piezoelectric cylindrical laminated shells under large deformation. Compos. Struct. 77, 171–181 (2007)

    Article  Google Scholar 

  14. Jansen, E.: A perturbation method for nonlinear vibrations of imperfect structures: application to cylindrical shell vibrations. Int. J. Solids Struct. 45, 1124–1145 (2008)

    Article  MATH  Google Scholar 

  15. Amabili, M.: Nonlinear vibrations of angle-ply laminated circular cylindrical shells: skewed modes. Compos. Struct. 94, 3697–3709 (2012)

    Article  Google Scholar 

  16. Amabili, M.: Internal resonances in non-linear vibrations of a laminated circular cylindrical shell. Nonlinear Dyn. 69, 755–770 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shen, H.-S.: Boundary layer theory for the nonlinear vibration of anisotropic laminated cylindrical shells. Compos. Struct. 97, 338–352 (2013)

    Article  Google Scholar 

  18. Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332, 6434–6450 (2013)

    Article  Google Scholar 

  19. Li, J., Guo, X.H., Guo, M.T., Yan, Y.H.: Analysis of dynamic elastic modulus of thin-wall cylindrical shells made from composites. J. Northeastern Univ. (Nat. Sci.) 29, 1770–1773 (2008). (in Chinese)

    Google Scholar 

  20. Bryan, G.H.: On the beats in the vibrations of a revolving cylinder or bell. In: Proceedings of the Cambridge Philosophical Society, pp. 101–111 (1890)

  21. DiTaranto, R.A., Lessen, M.: Coriolis acceleration effect on the vibration of a rotating thin-walled circular cylinder. ASME J. Appl. Mech. 31, 700–701 (1964)

    Article  Google Scholar 

  22. Srinivasan, A.V., Lauterbach, G.F.: Traveling waves in rotating cylindrical shells. J. Eng. Ind. 93, 1229–1232 (1971)

    Article  Google Scholar 

  23. Huang, S.C., Soedel, W.: Effects of Coriolis acceleration on the forced vibration of rotating cylindrical shells. ASME J. Appl. Mech. 55, 231–233 (1988)

    Article  Google Scholar 

  24. Ng, T.Y., Lam, K.Y., Reddy, J.N.: Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads. J. Sound Vib. 214, 513–529 (1998)

    Article  Google Scholar 

  25. Hua, L., Lam, K.Y.: Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method. Int. J. Mech. Sci. 40, 443–459 (1998)

    Article  MATH  Google Scholar 

  26. Lam, K.Y., Loy, C.T.: Influence of boundary conditions for a thin laminated rotating cylindrical shell. Compos. Struct. 41, 215–228 (1998)

    Article  Google Scholar 

  27. Lee, Y.S., Kim, Y.W.: Nonlinear free vibration analysis of rotating hybrid cylindrical shells. Comput. Struct. 70, 161–168 (1999)

    Article  MATH  Google Scholar 

  28. Liew, K.M., Hu, Y.G., Ng, T.Y., Zhao, X.: Dynamic stability of rotating cylindrical shells subjected to periodic axial loads. Int. J. Solids Struct. 43, 7553–7570 (2006)

    Article  MATH  Google Scholar 

  29. Liew, K.M., Ng, T.Y., Zhao, X., Reddy, J.N.: Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput. Methods Appl. Mech. Eng. 191, 4141–4157 (2002)

    Article  MATH  Google Scholar 

  30. Zhang, L.W., Zhu, P., Liew, K.M.: Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos. Struct. 108, 472–492 (2014)

    Article  Google Scholar 

  31. Zhu, P., Zhang, L.W., Liew, K.M.: Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation. Compos. Struct. 107, 298–314 (2014)

    Article  Google Scholar 

  32. Liew, K.M., Lei, Z.X., Yu, J.L., Zhang, L.W.: Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput. Methods Appl. Mech. Eng. 268, 1–17 (2014)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos. Struct. 111, 205–212 (2014)

    Article  Google Scholar 

  34. Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput. Methods Appl. Mech. Eng. 273, 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  35. Cheng, R.J., Zhang, L.W., Liew, K.M.: Modeling of biological population problems using the element-free kp-Ritz method. Appl. Math. Comput. 227, 274–290 (2014)

    Google Scholar 

  36. Zhang, L.W., Deng, Y.J., Liew, K.M.: An improved element-free Galerkin method for numerical modeling of the biological population problems. Eng. Anal. Bound. Elem. 40, 181–188 (2014)

    Article  MathSciNet  Google Scholar 

  37. Zhang, X.M.: Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach. Comput. Methods Appl. Mech. Eng. 191, 2029–2043 (2002)

    Google Scholar 

  38. Civalek, Ö.: A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution. Thin-Wall. Struct. 45, 692–698 (2007)

    Article  Google Scholar 

  39. Civalek, Ö., Gürses, M.: Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique. Int. J. Press. Vessel. Pip. 86, 677–683 (2009)

    Article  Google Scholar 

  40. Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-Part I: Numerical solution. Int. J. Mech. Sci. 52, 1217–1224 (2010)

    Article  Google Scholar 

  41. Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-Part II: Approximate analytical solution. Int. J. Mech. Sci. 52, 1208–1216 (2010)

    Article  Google Scholar 

  42. Sun, S.P., Chu, S.M., Cao, D.Q.: Vibration characteristics of thin rotating cylindrical shells with various boundary conditions. J. Sound Vib. 331, 4170–4186 (2012)

    Article  Google Scholar 

  43. Liu, Y.Q., Chu, F.L.: Nonlinear vibrations of rotating thin circular cylindrical shell. Nonlinear Dyn. 67, 1467–1479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Han, Q., Qin, Z., Zhao, J., Chu, F.: Parametric instability of cylindrical thin shell with periodic rotating speeds. Int. J. Nonlinear Mech. 57, 201–207 (2013)

    Article  Google Scholar 

  45. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  46. Wolfram, S.: The Mathematica Book. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  47. Peng, G.L.: Fortran 95 Program. China Electric Power Press, Beijing (2002). (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Project no. 11302046 and 11172063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Q. Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn 77, 1693–1707 (2014). https://doi.org/10.1007/s11071-014-1410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1410-5

Keywords

Navigation