[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Axisymmetric 3: 1 internal resonance of thin-walled hyperelastic cylindrical shells under both axial and radial excitations

薄壁超弹性圆柱壳在轴向和径向组合激励作用下的轴对称3:1内 共振

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nonlinear vibration with axisymmetric 3: 1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations. A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells. A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains. Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation, and their stabilities are determined via the modified sorting method. The effects of excitations on the steady-state responses are analyzed. The results reveal a crucial role played by the phase difference in the structural response, and the phase difference can effectively control the amplitude of vibration.

摘要

本文研究了不可压缩neo-Hookean超弹性圆柱壳在轴向和径向简谐激励作用下的轴对称3:1内共振问题. 基于薄壳大挠度理论, 导出了考虑所有非线性项的位移-应变关系. 通过Lagrange方程以及小应变假设得到了描述大挠度振动的非线性微分方程组. 采用谐波 平衡法和弧长连续法, 计算了系统的稳态响应, 并且结合改进的排序方法对其稳定性进行了判断. 分析了激励对于稳态响应的影响. 结 果表明, 组合激励的相位差对于结构响应有着非常重要的影响, 通过调节相位差可以有效地控制振动幅值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Ogden, Non-Linear Elastic Deformations. (Dover Publications, New York, 1984).

    MATH  Google Scholar 

  2. Y. B. Fu, R.W. Ogden, Nonlinear Elasticity: Theory and Applications. (Cambridge University Press, Cambridge, 2001).

    Book  Google Scholar 

  3. G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering. (John Wiley and Sons Ltd., Chichester, 2000).

    MATH  Google Scholar 

  4. M. Amabili, Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials. (Cambridge University Press, Cambridge, 2018).

    Book  Google Scholar 

  5. S. Fahimi, M. Baghani, M. R. Zakerzadeh, and A. H. Eskandari, Developing a visco-hyperelastic material model for 3D finite deformation of elastomers. Finite Elem. Anal. Des. 140, 1 (2017).

    Article  MathSciNet  Google Scholar 

  6. D. J. O’Shea, M. M. Attard, and D. C. Kellermann, Hyperelastic constitutive modelling for transversely isotropic composites and orthotropic biological tissues. Int. J. Solids Struct. 169, 1 (2019).

    Article  Google Scholar 

  7. V. Vedeneev, Nonlinear steady states of hyperelastic membrane tubes conveying a viscous non-Newtonian fluid. J. Fluids Struct. 98, 103113 (2020).

    Article  Google Scholar 

  8. W. Zhang, D. Niu, and F. Zhao, Large-amplitude oscillations of hyperelastic cylindrical membrane under thermal-mechanical fields. Acta Mech. Solid Sin. https://doi.org/10.1007/s10338-021-00278-0, (2021).

  9. Y. Wang, H. Ding, and L. Q. Chen, Nonlinear vibration of axially accelerating hyperelastic beams. Int. J. Non-Linear Mech. 99, 302 (2017).

    Article  Google Scholar 

  10. W. Chen, L. Wang, and H. Dai, Nonlinear free vibration of hyperelastic beams based on Neo-Hookean model. Int. J. Str. Stab. Dyn. 20, 2050015 (2020).

    Article  MathSciNet  Google Scholar 

  11. I. D. Breslavsky, M. Amabili, and M. Legrand, Static and dynamic behavior of circular cylindrical shell made of hyperelastic arterial material. J. Appl. Mech. 83, 051002 (2016).

    Article  Google Scholar 

  12. J. Zhang, J. Xu, X. Yuan, H. Ding, D. Niu, and W. Zhang, Nonlinear vibration analyses of cylindrical shells composed of hyperelastic materials. Acta Mech. Solid Sin. 32, 463 (2019).

    Article  Google Scholar 

  13. L. A. Mihai, and M. Alamoudi, Likely oscillatory motions of stochastic hyperelastic spherical shells and tubes. Int. J. Non-Linear Mech. 130, 103671 (2021).

    Article  Google Scholar 

  14. J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd Ed. (CRC Press, Boca Raton, 2007).

    Google Scholar 

  15. S. P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. (McGraw-Hill, New York, 1959).

    MATH  Google Scholar 

  16. M. Amabili, I. D. Breslavsky, and J. N. Reddy, Nonlinear higherorder shell theory for incompressible biological hyperelastic materials. Comput. Methods Appl. Mech. Eng. 346, 841 (2019).

    Article  Google Scholar 

  17. R. Karroubi, and M. Irani-Rahaghi, Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: Free vibration analysis. Appl. Math. Mech.-Engl. Ed. 40, 563 (2019).

    Article  MathSciNet  Google Scholar 

  18. M. R. Permoon, H. Haddadpour, and M. Shakouri, Nonlinear vibration analysis of fractional viscoelastic cylindrical shells. Acta Mech. 231, 4683 (2020).

    Article  MathSciNet  Google Scholar 

  19. Y. W. Kim, Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical shells. Acta Mech. Sin. 31, 920 (2015).

    Article  MathSciNet  Google Scholar 

  20. S. M. Sadeghi, and A. Alibeigloo, Parametric study of three-dimensional vibration of viscoelastic cylindrical shells on different boundary conditions. J. Vib. Control 25, 2567 (2019).

    Article  MathSciNet  Google Scholar 

  21. A. Rahimi, and A. Alibeigloo, High-accuracy approach for thermomechanical vibration analysis of FG-Gplrc fluid-conveying viscoelastic thick cylindrical shell. Int. J. Appl. Mech. 12, 2050073 (2020).

    Article  Google Scholar 

  22. M. Krack, J. Gross, Harmonic Balance for Nonlinear Vibration Problems. (Springer International Publishing, Cham, 2019).

    Book  Google Scholar 

  23. Y. M. Chen, Q. X. Liu, and J. K. Liu, Harmonic balance-based approach for optimal time delay to control unstable periodic orbits of chaotic systems. Acta Mech. Sin. 36, 918 (2020).

    Article  MathSciNet  Google Scholar 

  24. T. C. Yuan, J. Yang, and L. Q. Chen, Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta Mech. Sin. 35, 912 (2019).

    Article  MathSciNet  Google Scholar 

  25. A. P. Lewis, Approximations to limit cycles for a nonlinear multi-degree-of-freedom system with a cubic nonlinearity through combining the harmonic balance method with perturbation techniques. Int. J. Non-Linear Mech. 126, 103590 (2020).

    Article  Google Scholar 

  26. J. Xu, X. Yuan, J. Jiao, and H. Zhang, Computation of axisymmetric nonlinear low-frequency resonances of hyperelastic thin-walled cylindrical shells. Appl. Math. Model. 94, 332 (2021).

    Article  MathSciNet  Google Scholar 

  27. I. D. Breslavsky, M. Amabili, and M. Legrand, Nonlinear vibrations of thin hyperelastic plates. J. Sound Vib. 333, 4668 (2014).

    Article  Google Scholar 

  28. M. Radwańska, A. Stankiewicz, A. Wosatko, J. Pamin, Plate and shell structures: Selected analytical and finite element solutions. (Wiley, Sussex, 2017).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegang Yuan  (袁学刚).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11672069, 11872145, 11872159, 12172086, and 12101106).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Xu, J., Yuan, X. et al. Axisymmetric 3: 1 internal resonance of thin-walled hyperelastic cylindrical shells under both axial and radial excitations. Acta Mech. Sin. 38, 521417 (2022). https://doi.org/10.1007/s10409-022-09006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09006-x

Navigation