Abstract
Nonlinear vibration with axisymmetric 3: 1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations. A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells. A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains. Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation, and their stabilities are determined via the modified sorting method. The effects of excitations on the steady-state responses are analyzed. The results reveal a crucial role played by the phase difference in the structural response, and the phase difference can effectively control the amplitude of vibration.
摘要
本文研究了不可压缩neo-Hookean超弹性圆柱壳在轴向和径向简谐激励作用下的轴对称3:1内共振问题. 基于薄壳大挠度理论, 导出了考虑所有非线性项的位移-应变关系. 通过Lagrange方程以及小应变假设得到了描述大挠度振动的非线性微分方程组. 采用谐波 平衡法和弧长连续法, 计算了系统的稳态响应, 并且结合改进的排序方法对其稳定性进行了判断. 分析了激励对于稳态响应的影响. 结 果表明, 组合激励的相位差对于结构响应有着非常重要的影响, 通过调节相位差可以有效地控制振动幅值.
Similar content being viewed by others
References
R. W. Ogden, Non-Linear Elastic Deformations. (Dover Publications, New York, 1984).
Y. B. Fu, R.W. Ogden, Nonlinear Elasticity: Theory and Applications. (Cambridge University Press, Cambridge, 2001).
G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering. (John Wiley and Sons Ltd., Chichester, 2000).
M. Amabili, Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials. (Cambridge University Press, Cambridge, 2018).
S. Fahimi, M. Baghani, M. R. Zakerzadeh, and A. H. Eskandari, Developing a visco-hyperelastic material model for 3D finite deformation of elastomers. Finite Elem. Anal. Des. 140, 1 (2017).
D. J. O’Shea, M. M. Attard, and D. C. Kellermann, Hyperelastic constitutive modelling for transversely isotropic composites and orthotropic biological tissues. Int. J. Solids Struct. 169, 1 (2019).
V. Vedeneev, Nonlinear steady states of hyperelastic membrane tubes conveying a viscous non-Newtonian fluid. J. Fluids Struct. 98, 103113 (2020).
W. Zhang, D. Niu, and F. Zhao, Large-amplitude oscillations of hyperelastic cylindrical membrane under thermal-mechanical fields. Acta Mech. Solid Sin. https://doi.org/10.1007/s10338-021-00278-0, (2021).
Y. Wang, H. Ding, and L. Q. Chen, Nonlinear vibration of axially accelerating hyperelastic beams. Int. J. Non-Linear Mech. 99, 302 (2017).
W. Chen, L. Wang, and H. Dai, Nonlinear free vibration of hyperelastic beams based on Neo-Hookean model. Int. J. Str. Stab. Dyn. 20, 2050015 (2020).
I. D. Breslavsky, M. Amabili, and M. Legrand, Static and dynamic behavior of circular cylindrical shell made of hyperelastic arterial material. J. Appl. Mech. 83, 051002 (2016).
J. Zhang, J. Xu, X. Yuan, H. Ding, D. Niu, and W. Zhang, Nonlinear vibration analyses of cylindrical shells composed of hyperelastic materials. Acta Mech. Solid Sin. 32, 463 (2019).
L. A. Mihai, and M. Alamoudi, Likely oscillatory motions of stochastic hyperelastic spherical shells and tubes. Int. J. Non-Linear Mech. 130, 103671 (2021).
J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd Ed. (CRC Press, Boca Raton, 2007).
S. P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. (McGraw-Hill, New York, 1959).
M. Amabili, I. D. Breslavsky, and J. N. Reddy, Nonlinear higherorder shell theory for incompressible biological hyperelastic materials. Comput. Methods Appl. Mech. Eng. 346, 841 (2019).
R. Karroubi, and M. Irani-Rahaghi, Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: Free vibration analysis. Appl. Math. Mech.-Engl. Ed. 40, 563 (2019).
M. R. Permoon, H. Haddadpour, and M. Shakouri, Nonlinear vibration analysis of fractional viscoelastic cylindrical shells. Acta Mech. 231, 4683 (2020).
Y. W. Kim, Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical shells. Acta Mech. Sin. 31, 920 (2015).
S. M. Sadeghi, and A. Alibeigloo, Parametric study of three-dimensional vibration of viscoelastic cylindrical shells on different boundary conditions. J. Vib. Control 25, 2567 (2019).
A. Rahimi, and A. Alibeigloo, High-accuracy approach for thermomechanical vibration analysis of FG-Gplrc fluid-conveying viscoelastic thick cylindrical shell. Int. J. Appl. Mech. 12, 2050073 (2020).
M. Krack, J. Gross, Harmonic Balance for Nonlinear Vibration Problems. (Springer International Publishing, Cham, 2019).
Y. M. Chen, Q. X. Liu, and J. K. Liu, Harmonic balance-based approach for optimal time delay to control unstable periodic orbits of chaotic systems. Acta Mech. Sin. 36, 918 (2020).
T. C. Yuan, J. Yang, and L. Q. Chen, Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta Mech. Sin. 35, 912 (2019).
A. P. Lewis, Approximations to limit cycles for a nonlinear multi-degree-of-freedom system with a cubic nonlinearity through combining the harmonic balance method with perturbation techniques. Int. J. Non-Linear Mech. 126, 103590 (2020).
J. Xu, X. Yuan, J. Jiao, and H. Zhang, Computation of axisymmetric nonlinear low-frequency resonances of hyperelastic thin-walled cylindrical shells. Appl. Math. Model. 94, 332 (2021).
I. D. Breslavsky, M. Amabili, and M. Legrand, Nonlinear vibrations of thin hyperelastic plates. J. Sound Vib. 333, 4668 (2014).
M. Radwańska, A. Stankiewicz, A. Wosatko, J. Pamin, Plate and shell structures: Selected analytical and finite element solutions. (Wiley, Sussex, 2017).
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11672069, 11872145, 11872159, 12172086, and 12101106).
Rights and permissions
About this article
Cite this article
Jiao, J., Xu, J., Yuan, X. et al. Axisymmetric 3: 1 internal resonance of thin-walled hyperelastic cylindrical shells under both axial and radial excitations. Acta Mech. Sin. 38, 521417 (2022). https://doi.org/10.1007/s10409-022-09006-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10409-022-09006-x